{"title":"Is nonrainfall water a likely water source for arid and semiarid biocrusts? A critical perspective","authors":"Giora J. Kidron","doi":"10.1002/eco.2647","DOIUrl":null,"url":null,"abstract":"<p>It is commonly believed that nonrainfall water (NRW) serves as an important and even a central source of water for biocrusts in arid and semiarid regions. Known also as biological soil crusts, they mainly consist of cyanobacteria (that dwell within the upper 2 mm of the soil) and crustose chlorolichens that commonly protrude 1–2 mm above ground. It is commonly assumed that due to the prolonged dry season in deserts, a constant source of water is required for their survival. Overestimated, nonrealistic NRW values, whether due to the use of improper measurement devices or erroneous interpretation of the recorded values as well as instances during which distillation was regarded as dewfall, supported the notion that the amounts of NRW are sufficiently high to allow for biocrust activation. In the current commentary, a short account of the reasons that led scholars to believe that NRW may be utilized by biocrusts is presented, and the findings that led to this belief are critically analysed. It is argued that the amounts of NRW reaching the surface are below the critical thresholds of 0.05 and 0.1 mm required for net photosynthesis by the chlorolichens and cyanobacteria, respectively. Moreover, it is argued that even if these thresholds are seldom reached, their duration is too short to result in net carbon gain. As shown for the dewy Negev and may be applicable for other arid and semiarid regions, biocrusts rely on rainwater for their growth and survival.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2647","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is commonly believed that nonrainfall water (NRW) serves as an important and even a central source of water for biocrusts in arid and semiarid regions. Known also as biological soil crusts, they mainly consist of cyanobacteria (that dwell within the upper 2 mm of the soil) and crustose chlorolichens that commonly protrude 1–2 mm above ground. It is commonly assumed that due to the prolonged dry season in deserts, a constant source of water is required for their survival. Overestimated, nonrealistic NRW values, whether due to the use of improper measurement devices or erroneous interpretation of the recorded values as well as instances during which distillation was regarded as dewfall, supported the notion that the amounts of NRW are sufficiently high to allow for biocrust activation. In the current commentary, a short account of the reasons that led scholars to believe that NRW may be utilized by biocrusts is presented, and the findings that led to this belief are critically analysed. It is argued that the amounts of NRW reaching the surface are below the critical thresholds of 0.05 and 0.1 mm required for net photosynthesis by the chlorolichens and cyanobacteria, respectively. Moreover, it is argued that even if these thresholds are seldom reached, their duration is too short to result in net carbon gain. As shown for the dewy Negev and may be applicable for other arid and semiarid regions, biocrusts rely on rainwater for their growth and survival.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.