{"title":"Polyadic Opinion Formation: The Adaptive Voter Model on a Hypergraph","authors":"Anastasia Golovin, Jan Mölter, Christian Kuehn","doi":"10.1002/andp.202300342","DOIUrl":null,"url":null,"abstract":"<p>The adaptive voter model is widely used to model opinion dynamics in social complex networks. However, existing adaptive voter models are limited to only pairwise interactions and fail to capture the intricate social dynamics that arises in groups. This paper extends the adaptive voter model to hypergraphs to explore how forces of peer pressure influence collective decision-making. The model consists of two processes: individuals can either consult the group and change their opinion or leave the group and join a different one. The interplay between those two processes gives rise to a two-phase dynamics. In the initial phase, the topology of the hypergraph quickly reaches a new stable state. In the subsequent phase, opinion dynamics plays out on the new topology depending on the mechanism by which opinions spread. If the group always follows the majority, the network rapidly converges to fragmented communities. In contrast, if individuals choose an opinion proportionally to its representation in the group, the system remains in a metastable state for an extended period of time. The results are supported both by stochastic simulations and an analytical mean-field description in terms of hypergraph moments with a moment closure at the pair level.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202300342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202300342","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The adaptive voter model is widely used to model opinion dynamics in social complex networks. However, existing adaptive voter models are limited to only pairwise interactions and fail to capture the intricate social dynamics that arises in groups. This paper extends the adaptive voter model to hypergraphs to explore how forces of peer pressure influence collective decision-making. The model consists of two processes: individuals can either consult the group and change their opinion or leave the group and join a different one. The interplay between those two processes gives rise to a two-phase dynamics. In the initial phase, the topology of the hypergraph quickly reaches a new stable state. In the subsequent phase, opinion dynamics plays out on the new topology depending on the mechanism by which opinions spread. If the group always follows the majority, the network rapidly converges to fragmented communities. In contrast, if individuals choose an opinion proportionally to its representation in the group, the system remains in a metastable state for an extended period of time. The results are supported both by stochastic simulations and an analytical mean-field description in terms of hypergraph moments with a moment closure at the pair level.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.