首页 > 最新文献

Annalen der Physik最新文献

英文 中文
(Ann. Phys. 4/2025)
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-04-08 DOI: 10.1002/andp.202570008

Photonic Spin Hall Effect

Scattering from nanoparticles is one of the most important aspects of light-matter interaction, where the polarization and spatial degree of freedom of light become strongly coupled to each other. This coupling results in the spin-orbit interaction in the near-field as well. Consequently, the observed position of a nanoparticle undergoes a wavelength-scale transverse shift, i.e., photonic spin Hall effect. In article number 2400252, Lei Gao, Dongliang Gao, and co-workers discuss the background of recent advances in photonic spin Hall effect.

{"title":"(Ann. Phys. 4/2025)","authors":"","doi":"10.1002/andp.202570008","DOIUrl":"https://doi.org/10.1002/andp.202570008","url":null,"abstract":"<p><b>Photonic Spin Hall Effect</b></p><p>Scattering from nanoparticles is one of the most important aspects of light-matter interaction, where the polarization and spatial degree of freedom of light become strongly coupled to each other. This coupling results in the spin-orbit interaction in the near-field as well. Consequently, the observed position of a nanoparticle undergoes a wavelength-scale transverse shift, i.e., photonic spin Hall effect. In article number 2400252, Lei Gao, Dongliang Gao, and co-workers discuss the background of recent advances in photonic spin Hall effect. \u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Ann. Phys. 4/2025
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-04-08 DOI: 10.1002/andp.202570009
{"title":"Issue Information: Ann. Phys. 4/2025","authors":"","doi":"10.1002/andp.202570009","DOIUrl":"https://doi.org/10.1002/andp.202570009","url":null,"abstract":"","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Ann. Phys. 3/2025
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-11 DOI: 10.1002/andp.202570007
{"title":"Issue Information: Ann. Phys. 3/2025","authors":"","doi":"10.1002/andp.202570007","DOIUrl":"https://doi.org/10.1002/andp.202570007","url":null,"abstract":"","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Ann. Phys. 3/2025)
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-11 DOI: 10.1002/andp.202570006

Metamaterials

In article number 2400250, Yueyi Yuan, Yue Wang, Kuang Zhang, and co-workers systematically classify bound states in the continuum (BICs) phenomena and discuss their theoretical formation mechanisms and topological properties. Current advancements and applications of BIC-engineered devices are examined, alongside key challenges such as structural precision, material selection, and measurement complexities. Prospective directions for future research and development in the field of BICs are also outlined.

{"title":"(Ann. Phys. 3/2025)","authors":"","doi":"10.1002/andp.202570006","DOIUrl":"https://doi.org/10.1002/andp.202570006","url":null,"abstract":"<p><b>Metamaterials</b></p><p>In article number 2400250, Yueyi Yuan, Yue Wang, Kuang Zhang, and co-workers systematically classify bound states in the continuum (BICs) phenomena and discuss their theoretical formation mechanisms and topological properties. Current advancements and applications of BIC-engineered devices are examined, alongside key challenges such as structural precision, material selection, and measurement complexities. Prospective directions for future research and development in the field of BICs are also outlined.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algebraic Roadmap of Particle Theories
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-16 DOI: 10.1002/andp.202400324
Nichol Furey
<p>In this study, the detailed symmetry breaking pathways established in Furey et al. (2024) are bypassed. Instead, a direct route from the Spin(10) model to the Standard Model is enabled via a single algebraic constraint.</p><p>This single constraint, however, may be reconfigured as a requirement that three <span></span><math> <semantics> <mrow> <mi>so</mi> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <annotation>$mathfrak {so}(10)$</annotation> </semantics></math> actions coincide on a fixed space of multi-vector fermions. This <span></span><math> <semantics> <mrow> <mi>so</mi> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mspace></mspace> <mo>↦</mo> <mspace></mspace> <mi>su</mi> <msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>C</mi> </msub> <mi>⊕</mi> <mi>su</mi> <msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>L</mi> </msub> <mi>⊕</mi> <mi>u</mi> <msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>Y</mi> </msub> </mrow> <annotation>$mathfrak {so}(10)hspace{1.42262pt}mapsto hspace{1.42262pt}mathfrak {su}(3)_{textup {C}}oplus mathfrak {su}(2)_{textup {L}}oplus mathfrak {u}(1)_{textup {Y}}$</annotation> </semantics></math> breaking (from a three-way intersection) mirrors, in certain ways, the <span></span><math> <semantics> <mrow> <mi>so</mi> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mspace></mspace> <mo>↦</mo> <mspace></mspace> <msub> <mi>g</mi> <mn>2</mn> </msub> </mrow> <annotation>$mathfrak {so}(8)hspace{1.42262pt}mapsto hspace{1.42262pt}
{"title":"An Algebraic Roadmap of Particle Theories","authors":"Nichol Furey","doi":"10.1002/andp.202400324","DOIUrl":"https://doi.org/10.1002/andp.202400324","url":null,"abstract":"&lt;p&gt;In this study, the detailed symmetry breaking pathways established in Furey et al. (2024) are bypassed. Instead, a direct route from the Spin(10) model to the Standard Model is enabled via a single algebraic constraint.&lt;/p&gt;&lt;p&gt;This single constraint, however, may be reconfigured as a requirement that three &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;so&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathfrak {so}(10)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; actions coincide on a fixed space of multi-vector fermions. This &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;so&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mo&gt;↦&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;su&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;mi&gt;su&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;Y&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathfrak {so}(10)hspace{1.42262pt}mapsto hspace{1.42262pt}mathfrak {su}(3)_{textup {C}}oplus mathfrak {su}(2)_{textup {L}}oplus mathfrak {u}(1)_{textup {Y}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; breaking (from a three-way intersection) mirrors, in certain ways, the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;so&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mo&gt;↦&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathfrak {so}(8)hspace{1.42262pt}mapsto hspace{1.42262pt}","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algebraic Roadmap of Particle Theories
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-15 DOI: 10.1002/andp.202400322
Nichol Furey

Expanding the results of previous research, a network of algebraic connections is demonstrated between six well-known particle theories. These are the Spin(10) model, the Georgi–Glashow model, the Pati–Salam model, the Left–Right Symmetric model, the Standard Model both pre- and post-Higgs mechanism. A new inclusion of a quaternionic reflection within the network further differentiates W±$W^{pm }$ bosons from the Z0$Z^0$ boson in comparison to the Standard Model. It may introduce subtle new considerations for the phenomenology of electroweak symmetry breaking.

{"title":"An Algebraic Roadmap of Particle Theories","authors":"Nichol Furey","doi":"10.1002/andp.202400322","DOIUrl":"https://doi.org/10.1002/andp.202400322","url":null,"abstract":"<p>Expanding the results of previous research, a network of algebraic connections is demonstrated between <i>six well-known particle theories</i>. These are the Spin(10) model, the Georgi–Glashow model, the Pati–Salam model, the Left–Right Symmetric model, the Standard Model both pre- and post-Higgs mechanism. A new inclusion of a quaternionic reflection within the network further differentiates <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mo>±</mo>\u0000 </msup>\u0000 <annotation>$W^{pm }$</annotation>\u0000 </semantics></math> bosons from the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mn>0</mn>\u0000 </msup>\u0000 <annotation>$Z^0$</annotation>\u0000 </semantics></math> boson in comparison to the Standard Model. It may introduce subtle new considerations for the phenomenology of electroweak symmetry breaking.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400322","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Ann. Phys. 2/2025)
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1002/andp.202570003

Entanglement and Perfect One-Way EPR Steering in Cavity Magnonics System

In article number 2400307, Qi Guo and co-workers demonstrate that, for a cross-shaped cavity magnonics system, both the bipartite and tripartite entanglement, and the perfect one-way Einstein–Podolsky–Rosen (EPR) steering can be generated through the Kerr nonlinearity. Especially, different from the conventional protocols introducing additional unbalanced losses or noises, the presented scheme can manipulate the perfect one-way EPR steering only by adjusting the drive detuning. Therefore, the scheme provides a new insight for producing asymmetric EPR steering.

{"title":"(Ann. Phys. 2/2025)","authors":"","doi":"10.1002/andp.202570003","DOIUrl":"https://doi.org/10.1002/andp.202570003","url":null,"abstract":"<p><b>Entanglement and Perfect One-Way EPR Steering in Cavity Magnonics System</b></p><p>In article number 2400307, Qi Guo and co-workers demonstrate that, for a cross-shaped cavity magnonics system, both the bipartite and tripartite entanglement, and the perfect one-way Einstein–Podolsky–Rosen (EPR) steering can be generated through the Kerr nonlinearity. Especially, different from the conventional protocols introducing additional unbalanced losses or noises, the presented scheme can manipulate the perfect one-way EPR steering only by adjusting the drive detuning. Therefore, the scheme provides a new insight for producing asymmetric EPR steering.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Ann. Phys. 2/2025
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1002/andp.202570005
{"title":"Issue Information: Ann. Phys. 2/2025","authors":"","doi":"10.1002/andp.202570005","DOIUrl":"https://doi.org/10.1002/andp.202570005","url":null,"abstract":"","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algebraic Roadmap of Particle Theories
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1002/andp.202400323
Nichol Furey
<p>An optimal algebraic framework of particle physics has a number of checkpoints to pass. As a minimum, models should <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>1</mn> <mo>⟩</mo> </mrow> <annotation>$langle 1 rangle$</annotation> </semantics></math> conform to the Coleman-Mandula theorem (or establish a loophole), <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>2</mn> <mo>⟩</mo> </mrow> <annotation>$langle 2 rangle$</annotation> </semantics></math> evade familiar fermion doubling problems, <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>3</mn> <mo>⟩</mo> </mrow> <annotation>$langle 3 rangle$</annotation> </semantics></math> naturally explain the Standard Model's chirality, <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>4</mn> <mo>⟩</mo> </mrow> <annotation>$langle 4 rangle$</annotation> </semantics></math> exclude B-L gauge symmetry at low energy, and <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>5</mn> <mo>⟩</mo> </mrow> <annotation>$langle 5 rangle$</annotation> </semantics></math> explain the existence of three generations. The framework introduced in ref. [1] is shown to passes checkpoints <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>1</mn> <mo>⟩</mo> <mo>,</mo> <mo>⟨</mo> <mn>2</mn> <mo>⟩</mo> <mo>,</mo> <mo>⟨</mo> <mn>3</mn> <mo>⟩</mo> <mo>,</mo> <mo>⟨</mo> <mn>4</mn> <mo>⟩</mo> </mrow> <annotation>$langle 1 rangle, langle 2 rangle, langle 3 rangle, langle 4 rangle$</annotation> </semantics></math>, and has yet to cross <span></span><math> <semantics> <mrow> <mo>⟨</mo> <mn>5</mn> <mo>⟩</mo> </mrow> <annotation>$langle 5 rangle$</annotation> </semantics></math>. The discussion is concluded by elucidating an unexpected appearance of spacet
粒子物理学的最佳代数框架需要通过一系列检查点。至少,模型应该 ⟨ 1 ⟩ $langle 1 rangle$ 符合科尔曼-曼杜拉定理(或者建立一个漏洞), ⟨ 2 ⟩ $langle 2 rangle$ 规避我们熟悉的费米子倍增问题、 ⟨ 3 ⟩ $langle 3 rangle$ 自然地解释了标准模型的手性,⟨ 4 ⟩ $langle 4 rangle$ 排除了低能下的B-L规对称,⟨ 5 ⟩ $langle 5 rangle$ 解释了三代的存在。ref.[1 ⟨ 1 ⟩ , ⟨ 2 ⟩ , ⟨ 3 ⟩ 、 ⟨ 4 ⟩ $langle 1 rangle, langle 2 rangle, langle 3 rangle, langle 4 rangle$ ,并且尚未穿过 ⟨ 5 ⟩ $langle 5 rangle$ 。讨论的最后阐明了时空对称性的一个意想不到的现象。
{"title":"An Algebraic Roadmap of Particle Theories","authors":"Nichol Furey","doi":"10.1002/andp.202400323","DOIUrl":"https://doi.org/10.1002/andp.202400323","url":null,"abstract":"&lt;p&gt;An optimal algebraic framework of particle physics has a number of checkpoints to pass. As a minimum, models should &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 1 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; conform to the Coleman-Mandula theorem (or establish a loophole), &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 2 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; evade familiar fermion doubling problems, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 3 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; naturally explain the Standard Model's chirality, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 4 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; exclude B-L gauge symmetry at low energy, and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 5 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; explain the existence of three generations. The framework introduced in ref. [1] is shown to passes checkpoints &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 1 rangle, langle 2 rangle, langle 3 rangle, langle 4 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and has yet to cross &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⟨&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;mo&gt;⟩&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$langle 5 rangle$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The discussion is concluded by elucidating an unexpected appearance of spacet","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Ann. Phys. 2/2025) (Ann. Phys. 2/2025)
IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1002/andp.202570004

Topological Nodal-Line Semimetal PbTaSe2

A thermally induced structural phase transition and surface phonons are evidenced in the nodal-line semimetal PbTaSe2 by a comprehensive investigation of temperature-dependent Raman and single-crystal X-ray diffraction measurements, supported by density functional theory-based phonon calculation. This behavior is ascribed to the intricate interaction between surface topology and the dynamics of the underlying lattice, as illustrated in the cover image. The results obtained by Vivek Kumar and Pradeep Kumar (see article number 2400277) present new challenges and opportunities in the domain of future quantum materials.

{"title":"(Ann. Phys. 2/2025)","authors":"","doi":"10.1002/andp.202570004","DOIUrl":"https://doi.org/10.1002/andp.202570004","url":null,"abstract":"<p><b>Topological Nodal-Line Semimetal PbTaSe<sub>2</sub></b></p><p>A thermally induced structural phase transition and surface phonons are evidenced in the nodal-line semimetal PbTaSe<sub>2</sub> by a comprehensive investigation of temperature-dependent Raman and single-crystal X-ray diffraction measurements, supported by density functional theory-based phonon calculation. This behavior is ascribed to the intricate interaction between surface topology and the dynamics of the underlying lattice, as illustrated in the cover image. The results obtained by Vivek Kumar and Pradeep Kumar (see article number 2400277) present new challenges and opportunities in the domain of future quantum materials.\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annalen der Physik
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1