Kinetics Driving H2(a) Continuum Emission in Low-Frequency Ar-NH3 Dielectric Barrier Discharges at Atmospheric Pressure

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-03-29 DOI:10.1007/s11090-024-10459-7
Raphaël Robert, Françoise Massines, Luc Stafford
{"title":"Kinetics Driving H2(a) Continuum Emission in Low-Frequency Ar-NH3 Dielectric Barrier Discharges at Atmospheric Pressure","authors":"Raphaël Robert, Françoise Massines, Luc Stafford","doi":"10.1007/s11090-024-10459-7","DOIUrl":null,"url":null,"abstract":"<p>Time-resolved optical emission and absorption spectroscopy was used to analyze a 50 kHz Ar-NH<sub>3</sub> dielectric barrier discharge operated in a homogeneous glow discharge regime at atmospheric pressure. In addition to the typical NH(A-X), N<sub>2</sub>(C-B), and Ar(2p-1s) transitions, a continuum emission linked to de-excitation of <span>\\({{\\text{H}}}_{2}\\left({{\\text{a}}}^{3}{\\Sigma }_{{\\text{g}}}^{+}\\right)\\)</span> states was detected between 180 and 250 nm and lasted for a long time after discharge extinction. Over the range of experimental conditions investigated, the emitting <span>\\({{\\text{H}}}_{2}\\left({{\\text{a}}}^{3}{\\Sigma }_{{\\text{g}}}^{+}\\right)\\)</span> states are proposed to be populated by collisions of <span>\\({{\\text{H}}}_{2}\\left({{\\text{X}}}^{1}{\\Sigma }_{{\\text{g}}}^{+}\\right)\\)</span> with Ar(1s) states during discharge, and by dissociative recombination of the vibrationally-excited ammonia ion (NH<sub>3</sub><sup>+</sup>(v)) after the discharge. NH<sub>3</sub><sup>+</sup>(v) is produced by charge transfer from Ar<sub>2</sub><sup>+</sup> to NH<sub>3</sub>, and it breaks into <span>\\({{\\text{H}}}_{2}\\left({{\\text{a}}}^{3}{\\Sigma }_{{\\text{g}}}^{+}\\right)\\)</span> (or <span>\\({{\\text{H}}}_{2}\\left({{\\text{c}}}^{3}{\\Pi }_{u}\\right)\\)</span> or <span>\\({{\\text{H}}}_{2}\\left({{\\text{d}}}^{3}{\\Pi }_{u}\\right)\\)</span>) and NH upon gas phase recombination with a low-energy electron. Based on this proposed mechanism, a 1D fluid model was refined to include these reactions and used to simulate the emission intensity from <span>\\({{\\text{H}}}_{2}\\left({{\\text{a}}}^{3}{\\Sigma }_{{\\text{g}}}^{+}\\right)\\)</span> and revealed good agreement with experimental data.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-024-10459-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Time-resolved optical emission and absorption spectroscopy was used to analyze a 50 kHz Ar-NH3 dielectric barrier discharge operated in a homogeneous glow discharge regime at atmospheric pressure. In addition to the typical NH(A-X), N2(C-B), and Ar(2p-1s) transitions, a continuum emission linked to de-excitation of \({{\text{H}}}_{2}\left({{\text{a}}}^{3}{\Sigma }_{{\text{g}}}^{+}\right)\) states was detected between 180 and 250 nm and lasted for a long time after discharge extinction. Over the range of experimental conditions investigated, the emitting \({{\text{H}}}_{2}\left({{\text{a}}}^{3}{\Sigma }_{{\text{g}}}^{+}\right)\) states are proposed to be populated by collisions of \({{\text{H}}}_{2}\left({{\text{X}}}^{1}{\Sigma }_{{\text{g}}}^{+}\right)\) with Ar(1s) states during discharge, and by dissociative recombination of the vibrationally-excited ammonia ion (NH3+(v)) after the discharge. NH3+(v) is produced by charge transfer from Ar2+ to NH3, and it breaks into \({{\text{H}}}_{2}\left({{\text{a}}}^{3}{\Sigma }_{{\text{g}}}^{+}\right)\) (or \({{\text{H}}}_{2}\left({{\text{c}}}^{3}{\Pi }_{u}\right)\) or \({{\text{H}}}_{2}\left({{\text{d}}}^{3}{\Pi }_{u}\right)\)) and NH upon gas phase recombination with a low-energy electron. Based on this proposed mechanism, a 1D fluid model was refined to include these reactions and used to simulate the emission intensity from \({{\text{H}}}_{2}\left({{\text{a}}}^{3}{\Sigma }_{{\text{g}}}^{+}\right)\) and revealed good agreement with experimental data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气压下低频 Ar-NH3 绝缘屏障放电中 H2(a) 连续发射的动力学驱动力
利用时间分辨光学发射和吸收光谱分析了在大气压下均相辉光放电条件下运行的 50 kHz Ar-NH3 介质势垒放电。除了典型的 NH(A-X)、N2(C-B)和 Ar(2p-1s)跃迁之外,在 180 纳米到 250 纳米之间还检测到了与\({{text{H}}}_{2}}\left({{text{a}}^{3}{\Sigma }_{{text{g}}^{+}\right))态去激发有关的连续发射,并且在放电熄灭后持续了很长时间。在所研究的实验条件范围内、发射的 \({{text{H}}}_{2}\left({{text{a}}}^{3}{{text{g}}}^{+}\right)态是通过({{text{H}}}_{2}/left({{text{X}}}^{1}{text{g}}^{+}/right))态在放电过程中与 Ar(1s)态碰撞而填充、以及放电后振动激发的氨离子 (NH3+(v)) 的离解重组。NH3+(v) 由 Ar2+ 向 NH3 的电荷转移产生、它分裂成 \({{text{H}}}_{2}/left({{text{a}}}^{3}{Sigma}_{text{g}}^{+}/right))(或 \({{text{H}}}_{2}/left({{text{c}}}^{3}{Pi或({{text{H}}_{2}left({{text{d}}}^{3}{Pi}_{u}\right))和 NH 在气相中与一个低能电子重组时。和 NH。基于这一机制,我们改进了一维流体模型以包含这些反应,并用它模拟了 \({{text{H}}_{2}}left({{text{a}}^{3}{{Sigma }_{{text{g}}^{+}/right)\) 的发射强度,结果显示与实验数据非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water A Biphasic Plasma Microreactor for Pollutants Degradation in Water Ammonia Synthesis via Membrane Dielectric-Barrier Discharge Reactor Integrated with Metal Catalyst Enhancement of W Nanoparticles Synthesis by Injecting H2 in a Magnetron Sputtering Gas Aggregation Cluster Source Operated in Ar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1