Investigation on the spreading behaviour of sand powder used in binder jet 3D printing

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-03-29 DOI:10.1007/s10035-024-01420-8
Yulun Xu, Lanzhou Ge, Wenguang Nan
{"title":"Investigation on the spreading behaviour of sand powder used in binder jet 3D printing","authors":"Yulun Xu,&nbsp;Lanzhou Ge,&nbsp;Wenguang Nan","doi":"10.1007/s10035-024-01420-8","DOIUrl":null,"url":null,"abstract":"<div><p>The spreading behaviour of cohesive sand powder is modelled by Discrete Element Method, and the spreadability and the mechanical jamming are focused. The empty patches and total particle volume of the spread layer are examined, followed by the analysis of the geometry force and jamming structure. The results show that several empty patches with different size and shapes could be observed within the spread layer along the spreading direction even when the gap height increases to 3.0<i>D</i><sub>90</sub>. Large particles are more difficult to be spread onto the base due to jamming, although their size is smaller than the gap height. Size segregation of particles occurs before particles entering the gap between the blade and base. There are almost no particles on the smooth base when the gap height is small, due to the full-slip flow of particles. The difference of the spread layer and spreadability between the cases with rough and smooth base is reduced by the increase of the gap height. An interesting correlation between jamming effect and local defects (empty spaces) in the powder layer is identified. The resistance to particle rolling is important for the mechanical jamming reported in this work. The jammed particles with a larger size ratio tend to be more stable.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01420-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The spreading behaviour of cohesive sand powder is modelled by Discrete Element Method, and the spreadability and the mechanical jamming are focused. The empty patches and total particle volume of the spread layer are examined, followed by the analysis of the geometry force and jamming structure. The results show that several empty patches with different size and shapes could be observed within the spread layer along the spreading direction even when the gap height increases to 3.0D90. Large particles are more difficult to be spread onto the base due to jamming, although their size is smaller than the gap height. Size segregation of particles occurs before particles entering the gap between the blade and base. There are almost no particles on the smooth base when the gap height is small, due to the full-slip flow of particles. The difference of the spread layer and spreadability between the cases with rough and smooth base is reduced by the increase of the gap height. An interesting correlation between jamming effect and local defects (empty spaces) in the powder layer is identified. The resistance to particle rolling is important for the mechanical jamming reported in this work. The jammed particles with a larger size ratio tend to be more stable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于粘合剂喷射三维打印中使用的砂粉扩散行为的研究
采用离散元法对粘性砂粉的铺展行为进行建模,并重点研究了铺展性和机械干扰。研究了铺展层的空斑块和总颗粒体积,然后分析了几何力和干扰结构。结果表明,即使间隙高度增加到 3.0D90 时,铺展层内沿铺展方向仍可观察到多个不同大小和形状的空斑块。虽然大颗粒的尺寸小于间隙高度,但由于受到干扰,它们更难被铺展到基底上。在颗粒进入叶片和底座之间的间隙之前,颗粒的尺寸会发生偏析。当间隙高度较小时,由于颗粒的全滑动流动,光滑基底上几乎没有颗粒。随着间隙高度的增加,粗糙底座和光滑底座之间的铺展层和铺展性差异减小。我们发现了粉末层中的堵塞效应和局部缺陷(空隙)之间有趣的相关性。颗粒的滚动阻力对本研究中报告的机械堵塞非常重要。尺寸比越大的颗粒越稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Reducing segregation in vibrated binary-sized granular mixtures by excessive small particle introduction Thermal conductivity and shrinkage characteristics of bentonite-fly ash and bentonite-sand backfill material Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou Prediction of liquid bridge rupture between two plates combining artificial neural network with grey wolf optimization algorithm Construction of granular aggregates with different porosity, shape, and size distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1