Biogas upgrading—Computer-aided ionic liquid absorbent design and process evaluation

Daili Peng, Francesco Picchioni
{"title":"Biogas upgrading—Computer-aided ionic liquid absorbent design and process evaluation","authors":"Daili Peng,&nbsp;Francesco Picchioni","doi":"10.1016/j.jil.2024.100088","DOIUrl":null,"url":null,"abstract":"<div><p>Biogas is a renewable energy source and needs to be upgraded to biomethane for injection into the natural gas grid or use as fuel. To design ionic liquid (IL) solvents for biogas upgrading, a computer-aided ionic liquid design (CAILD) method and the corresponding process simulation are presented. The UNIFAC-IL model is employed to calculate the solubility of gases in ILs, while group contribution (GC) based models are used to predict the physicochemical properties of ILs. By using the performance index (<em>PI</em>) as the objective function and the structural feasibility and physicochemical properties as constraints, a mixed-integer nonlinear programming (MINLP) problem is formulated and solved by the generate-and-test method. Two IL solvents, [MMPY][Tf<sub>2</sub>N] (1,3-dimethylpyridinium bis(trifluoromethylsulfonyl)imide) and [MMPY][eFAP] (1,3-dimethylpyridinium tris(pentafluoroethyl) trifluorophosphate), are found to be the optimal IL solvents from 880 IL candidates. To perform the process simulation by using the designed ILs, the parameters for the equations of calculation of required properties are regressed. A sensitivity analysis is performed to find the optimal conditions for the process. Finally, the developed process is compared with the water-scrubbing process for biogas upgrading.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000119/pdfft?md5=1e5f1efeea5ddd040cf6158bb8b2beca&pid=1-s2.0-S2772422024000119-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422024000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biogas is a renewable energy source and needs to be upgraded to biomethane for injection into the natural gas grid or use as fuel. To design ionic liquid (IL) solvents for biogas upgrading, a computer-aided ionic liquid design (CAILD) method and the corresponding process simulation are presented. The UNIFAC-IL model is employed to calculate the solubility of gases in ILs, while group contribution (GC) based models are used to predict the physicochemical properties of ILs. By using the performance index (PI) as the objective function and the structural feasibility and physicochemical properties as constraints, a mixed-integer nonlinear programming (MINLP) problem is formulated and solved by the generate-and-test method. Two IL solvents, [MMPY][Tf2N] (1,3-dimethylpyridinium bis(trifluoromethylsulfonyl)imide) and [MMPY][eFAP] (1,3-dimethylpyridinium tris(pentafluoroethyl) trifluorophosphate), are found to be the optimal IL solvents from 880 IL candidates. To perform the process simulation by using the designed ILs, the parameters for the equations of calculation of required properties are regressed. A sensitivity analysis is performed to find the optimal conditions for the process. Finally, the developed process is compared with the water-scrubbing process for biogas upgrading.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沼气提纯--计算机辅助离子液体吸收剂设计和工艺评估
沼气是一种可再生能源,需要升级为生物甲烷,才能注入天然气网或用作燃料。为了设计用于沼气升级的离子液体(IL)溶剂,本文介绍了一种计算机辅助离子液体设计(CAILD)方法和相应的过程模拟。采用 UNIFAC-IL 模型计算气体在离子液体中的溶解度,同时使用基于基团贡献(GC)的模型预测离子液体的理化性质。以性能指标(PI)为目标函数,以结构可行性和理化性质为约束条件,提出了一个混合整数非线性编程(MINLP)问题,并通过生成和测试方法进行了求解。在 880 种候选 IL 溶剂中,[MMPY][Tf2N](1,3-二甲基吡啶鎓双(三氟甲基磺酰基)亚胺)和[MMPY][eFAP](1,3-二甲基吡啶鎓三(五氟乙基)三氟磷酸盐)被认为是最佳的 IL 溶剂。为了使用所设计的 IL 进行工艺模拟,对所需性能计算公式的参数进行了回归。进行敏感性分析以找到工艺的最佳条件。最后,将所开发的工艺与用于沼气升级的水洗工艺进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Phase equilibrium and kinetic studies of choline chloride-based deep eutectic solvents in water system for the inhibition of methane gas hydrate formation Enhancing water circularity: Lactic acid-menthol deep eutectic solvent for efficient fats, oils and grease (FOG) removal and recovery from contaminated waters Designing dicationic organic salts and ionic liquids exhibiting high fluorescence in the solid state Effect of modifiers on the stability of 1‑butyl‑3-methylimidazolium-based ionic liquids Surface-induced nano-generator utilizing a thermo-responsive smart window based on ionic liquid aqueous solution that exhibits lower critical solution temperature type phase separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1