Photothermal Mineralization of Polyolefin Microplastics via TiO2 Hierarchical Porous Layer-Based Semiwetting Air-Plastic-Solid Interfaces

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-03-30 DOI:10.1002/adma.202400681
Jiaqi Zhao, Peng Miao, Xuerui Zhang, Pu Wang, Zhenhua Li, Li-Zhu Wu, Run Shi, Tierui Zhang
{"title":"Photothermal Mineralization of Polyolefin Microplastics via TiO2 Hierarchical Porous Layer-Based Semiwetting Air-Plastic-Solid Interfaces","authors":"Jiaqi Zhao,&nbsp;Peng Miao,&nbsp;Xuerui Zhang,&nbsp;Pu Wang,&nbsp;Zhenhua Li,&nbsp;Li-Zhu Wu,&nbsp;Run Shi,&nbsp;Tierui Zhang","doi":"10.1002/adma.202400681","DOIUrl":null,"url":null,"abstract":"<p>Photo-mineralization of microplastics under mild conditions has emerged as a promising solution to plastic waste disposal. However, the inadequate contact between oxygen, water-insoluble polyolefin microplastics, and photocatalysts remains a critical issue. In this study, a TiO<sub>2</sub> hierarchical porous layer (TiO<sub>2</sub>-HPL) photocatalyst is presented to establish air-plastic-solid triphase interfaces for the photothermal mineralization of polyolefins. The wettability of the TiO<sub>2</sub>-HPL-based triphase interface is finely controlled from plastophobic to plastophilic. High-resolution imaging and finite element simulation demonstrate the significance of a semiwetting state in achieving multidirectional oxygen diffusion through the hierarchical pore structure while maintaining sufficient contact between the plastic phase and photocatalysts. For low-density polyethylene, the TiO<sub>2</sub>-HPL achieves a photothermal mineralization rate of 5.63 mmol g<sup>−1</sup> h<sup>−1</sup> and a conversion of 26.3% after 20 h of continuous irradiation. Additionally, the triphase photocatalytic system with semiwetting gas-plastic-solid interfaces shows good universality for various polyolefin reagents and products, illustrating its potential in achieving efficient photothermal mineralization of non-degradable microplastics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202400681","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-mineralization of microplastics under mild conditions has emerged as a promising solution to plastic waste disposal. However, the inadequate contact between oxygen, water-insoluble polyolefin microplastics, and photocatalysts remains a critical issue. In this study, a TiO2 hierarchical porous layer (TiO2-HPL) photocatalyst is presented to establish air-plastic-solid triphase interfaces for the photothermal mineralization of polyolefins. The wettability of the TiO2-HPL-based triphase interface is finely controlled from plastophobic to plastophilic. High-resolution imaging and finite element simulation demonstrate the significance of a semiwetting state in achieving multidirectional oxygen diffusion through the hierarchical pore structure while maintaining sufficient contact between the plastic phase and photocatalysts. For low-density polyethylene, the TiO2-HPL achieves a photothermal mineralization rate of 5.63 mmol g−1 h−1 and a conversion of 26.3% after 20 h of continuous irradiation. Additionally, the triphase photocatalytic system with semiwetting gas-plastic-solid interfaces shows good universality for various polyolefin reagents and products, illustrating its potential in achieving efficient photothermal mineralization of non-degradable microplastics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于二氧化钛分层多孔层的半湿空气-塑料-固体界面对聚烯烃微塑料进行光热矿化。
在温和条件下对微塑料进行光矿化处理已成为一种很有前途的塑料废物处理解决方案。然而,氧气、不溶于水的聚烯烃微塑料和光催化剂之间的接触不足仍然是一个关键问题。在本研究中,我们提出了一种二氧化钛分层多孔层(TiO2-HPL)光催化剂,用于建立空气-塑料-固体三相界面,实现聚烯烃的光热矿化。基于 TiO2-HPL 的三相界面的润湿性可从疏塑到亲塑进行精细控制。高分辨率成像和有限元模拟证明了半润湿状态在实现氧气通过分层孔隙结构多向扩散的同时保持塑料相与光催化剂之间充分接触的重要性。对于低密度聚乙烯,TiO2-HPL 的光热矿化率为 5.63 mmol g-1 h-1,连续辐照 20 小时后的转化率为 26.3%。此外,具有半湿润气塑固界面的三相光催化系统对各种聚烯烃试剂和产品具有良好的通用性,这说明它在实现不可降解微塑料的高效光热矿化方面具有潜力。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cellulose-Templated Nanomaterials for Nanogenerators and Self-Powered Sensors Van der Waals Heterojunction Based Self-Powered Biomimetic Dual-Mode Sensor for Precise Object Identification Reconfigurable Visible Light-Driven Liquid Crystalline Network Showing Off-Equilibrium Motions Enabled by Mesogen-Grafted Donor–Acceptor Stenhouse Adducts Balancing Potassiophilicity and Catalytic Activity of Artificial Interface Layer for Dendrite-Free Sodium/Potassium Metal Batteries Functional Carbon Springs Enabled Dynamic Tunable Microwave Absorption and Thermal Insulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1