Trichoderma koningiopsis fermentation in airlift bioreactor for bioherbicide production.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-05-01 Epub Date: 2024-03-30 DOI:10.1007/s00449-024-02991-9
Aline Frumi Camargo, Simone Kubeneck, Charline Bonatto, Suzana Fátima Bazoti, Júlia Pieper Nerling, Gabriel Henrique Klein, William Michelon, Sérgio L Alves, Altemir José Mossi, Gislaine Fongaro, Helen Treichel
{"title":"Trichoderma koningiopsis fermentation in airlift bioreactor for bioherbicide production.","authors":"Aline Frumi Camargo, Simone Kubeneck, Charline Bonatto, Suzana Fátima Bazoti, Júlia Pieper Nerling, Gabriel Henrique Klein, William Michelon, Sérgio L Alves, Altemir José Mossi, Gislaine Fongaro, Helen Treichel","doi":"10.1007/s00449-024-02991-9","DOIUrl":null,"url":null,"abstract":"<p><p>During scaling of fermentations, choosing a bioreactor is fundamental to ensure the product's quality. This study aims to produce bioherbicides using Trichoderma koningiopsis fermentation, evaluating process parameters in an Airlift bioreactor. As a response, we quantified the production of enzymes involved in the bioherbicide activity (amylase, cellulase, laccase, lipase, and peroxidase). In addition, it evaluated the agronomic efficiency of the fermented extract optimized through tests that promoted soybean growth and nodulation, soybean seed germination, and in vitro phytopathogen control. As a result of optimizing the scaling bioprocess, it was possible to obtain an adequate fermentation condition, which, when applied to soybean seeds, had beneficial effects on their growth. It allowed the production of an enzyme cocktail. These results add a crucial biotechnological potential factor for the success of the optimized formulation in the Airlift bioreactor, in addition to presenting relevant results for the scientific community.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"651-663"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-02991-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During scaling of fermentations, choosing a bioreactor is fundamental to ensure the product's quality. This study aims to produce bioherbicides using Trichoderma koningiopsis fermentation, evaluating process parameters in an Airlift bioreactor. As a response, we quantified the production of enzymes involved in the bioherbicide activity (amylase, cellulase, laccase, lipase, and peroxidase). In addition, it evaluated the agronomic efficiency of the fermented extract optimized through tests that promoted soybean growth and nodulation, soybean seed germination, and in vitro phytopathogen control. As a result of optimizing the scaling bioprocess, it was possible to obtain an adequate fermentation condition, which, when applied to soybean seeds, had beneficial effects on their growth. It allowed the production of an enzyme cocktail. These results add a crucial biotechnological potential factor for the success of the optimized formulation in the Airlift bioreactor, in addition to presenting relevant results for the scientific community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在气升式生物反应器中发酵小米糠毛霉以生产生物除草剂。
在扩大发酵规模的过程中,选择生物反应器是确保产品质量的关键。本研究旨在利用科宁氏毛霉发酵法生产生物除草剂,评估气升式生物反应器的工艺参数。作为回应,我们对参与生物除草剂活性的酶(淀粉酶、纤维素酶、漆酶、脂肪酶和过氧化物酶)的产量进行了量化。此外,我们还通过促进大豆生长和结瘤、大豆种子发芽以及体外植物病原体控制等试验,评估了发酵提取物的农艺效率。通过优化缩放生物工艺,获得了适当的发酵条件。它允许生产一种鸡尾酒酶。除了向科学界展示相关成果外,这些成果还为空运生物反应器中优化配方的成功增加了一个重要的生物技术潜在因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1