A systematic analyses of different bioinformatics pipelines for genomic data and its impact on deep learning models for chromatin loop prediction.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2024-09-27 DOI:10.1093/bfgp/elae009
Anup Kumar Halder, Abhishek Agarwal, Karolina Jodkowska, Dariusz Plewczynski
{"title":"A systematic analyses of different bioinformatics pipelines for genomic data and its impact on deep learning models for chromatin loop prediction.","authors":"Anup Kumar Halder, Abhishek Agarwal, Karolina Jodkowska, Dariusz Plewczynski","doi":"10.1093/bfgp/elae009","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic data analysis has witnessed a surge in complexity and volume, primarily driven by the advent of high-throughput technologies. In particular, studying chromatin loops and structures has become pivotal in understanding gene regulation and genome organization. This systematic investigation explores the realm of specialized bioinformatics pipelines designed specifically for the analysis of chromatin loops and structures. Our investigation incorporates two protein (CTCF and Cohesin) factor-specific loop interaction datasets from six distinct pipelines, amassing a comprehensive collection of 36 diverse datasets. Through a meticulous review of existing literature, we offer a holistic perspective on the methodologies, tools and algorithms underpinning the analysis of this multifaceted genomic feature. We illuminate the vast array of approaches deployed, encompassing pivotal aspects such as data preparation pipeline, preprocessing, statistical features and modelling techniques. Beyond this, we rigorously assess the strengths and limitations inherent in these bioinformatics pipelines, shedding light on the interplay between data quality and the performance of deep learning models, ultimately advancing our comprehension of genomic intricacies.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"538-548"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic data analysis has witnessed a surge in complexity and volume, primarily driven by the advent of high-throughput technologies. In particular, studying chromatin loops and structures has become pivotal in understanding gene regulation and genome organization. This systematic investigation explores the realm of specialized bioinformatics pipelines designed specifically for the analysis of chromatin loops and structures. Our investigation incorporates two protein (CTCF and Cohesin) factor-specific loop interaction datasets from six distinct pipelines, amassing a comprehensive collection of 36 diverse datasets. Through a meticulous review of existing literature, we offer a holistic perspective on the methodologies, tools and algorithms underpinning the analysis of this multifaceted genomic feature. We illuminate the vast array of approaches deployed, encompassing pivotal aspects such as data preparation pipeline, preprocessing, statistical features and modelling techniques. Beyond this, we rigorously assess the strengths and limitations inherent in these bioinformatics pipelines, shedding light on the interplay between data quality and the performance of deep learning models, ultimately advancing our comprehension of genomic intricacies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统分析基因组数据的不同生物信息学管道及其对染色质环路预测深度学习模型的影响。
在高通量技术的推动下,基因组数据分析的复杂性和数量激增。特别是,研究染色质环路和结构已成为了解基因调控和基因组组织的关键。这项系统性研究探索了专为分析染色质环路和结构而设计的专业生物信息学管道领域。我们的研究结合了来自六个不同管道的两个蛋白质(CTCF 和 Cohesin)因子特异性环路相互作用数据集,收集了 36 个不同数据集的综合数据集。通过对现有文献的细致回顾,我们从整体的角度探讨了分析这一多方面基因组特征的方法、工具和算法。我们阐明了所采用的大量方法,包括数据准备管道、预处理、统计特征和建模技术等关键方面。除此之外,我们还严格评估了这些生物信息学管道固有的优势和局限性,揭示了数据质量与深度学习模型性能之间的相互作用,最终推动了我们对基因组复杂性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Sesame Genomic Web Resource (SesameGWR): a well-annotated data resource for transcriptomic signatures of abiotic and biotic stress responses in sesame (Sesamum indicum L.). A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data. AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia. Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer. Long-read RNA sequencing can probe organelle genome pervasive transcription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1