Pseudotargeted metabolomics method and its application in erastin-stimulated gastric adenocarcinoma cells based on liquid chromatography with tandem mass spectrometry
Ying Liu , Wenchao Hu , Mogesdessale Asmamaw , Lulu Pan , Hongmin Liu , Juan Li
{"title":"Pseudotargeted metabolomics method and its application in erastin-stimulated gastric adenocarcinoma cells based on liquid chromatography with tandem mass spectrometry","authors":"Ying Liu , Wenchao Hu , Mogesdessale Asmamaw , Lulu Pan , Hongmin Liu , Juan Li","doi":"10.1016/j.ijms.2024.117238","DOIUrl":null,"url":null,"abstract":"<div><p>Erastin, a classical ferroptosis inducer, exerts cytotoxicity in several types of cancer cells including gastric cancer cells. However, the mechanism of erastin in regulating metabolic pathways in gastric cancer remains largely unclear. To investigate the gastric cellular response to erastin therapy, a pseudotargeted metabolomics method was achieved on ultra-high performance liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry (UHPLC-QTRAP MS), which was used to investigate metabolic changes between erastin-treated MGC-803 cells and the controls at different time points. We found that erastin induced tremendous impact on the metabolome of gastric cells by affecting key metabolic processes, such as cysteine and methionine metabolism, tryptophan metabolism, purine metabolism, glutathione biosynthesis, glycolysis and TCA cycle. Interestingly, S-adenosylmethionine, methionine, serine and cysteine were obviously increasing treads after erastin treatment, while S-adenosylhomocysteine and glutathione were always down-regulated up to 24 h. The results indicated that DNA methylation was activated and glutathione biosynthesis was blocked in erastin-treated MGC-803 gastric cells, highlighting the importance of erastin as a promising drug candidate for in <em>vivo</em> treatment of gastric tumor.</p></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"500 ","pages":"Article 117238"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624000496","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Erastin, a classical ferroptosis inducer, exerts cytotoxicity in several types of cancer cells including gastric cancer cells. However, the mechanism of erastin in regulating metabolic pathways in gastric cancer remains largely unclear. To investigate the gastric cellular response to erastin therapy, a pseudotargeted metabolomics method was achieved on ultra-high performance liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry (UHPLC-QTRAP MS), which was used to investigate metabolic changes between erastin-treated MGC-803 cells and the controls at different time points. We found that erastin induced tremendous impact on the metabolome of gastric cells by affecting key metabolic processes, such as cysteine and methionine metabolism, tryptophan metabolism, purine metabolism, glutathione biosynthesis, glycolysis and TCA cycle. Interestingly, S-adenosylmethionine, methionine, serine and cysteine were obviously increasing treads after erastin treatment, while S-adenosylhomocysteine and glutathione were always down-regulated up to 24 h. The results indicated that DNA methylation was activated and glutathione biosynthesis was blocked in erastin-treated MGC-803 gastric cells, highlighting the importance of erastin as a promising drug candidate for in vivo treatment of gastric tumor.
期刊介绍:
The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics.
Papers, in which standard mass spectrometry techniques are used for analysis will not be considered.
IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.