{"title":"Analyzing of hydrodynamic stress and mass transfer requirements of a fermentation process carried out in a coaxial bioreactor: a scale-up study.","authors":"Ali Rahimzadeh, Farhad Ein-Mozaffari, Ali Lohi","doi":"10.1007/s00449-024-02990-w","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid hydrodynamic stress has a deterministic effect on the morphology of filamentous fungi. Although the coaxial mixer has been recognized as a suitable gas dispersion system for minimizing inhomogeneities within a bioreactor, its performance for achieving enhanced oxygen transfer while operating at a reduced shear environment has not been investigated yet, specifically upon scale-up. Therefore, the influence of the impeller type, aeration rate, and central impeller retrofitting on the efficacy of an abiotic coaxial system containing a shear-thinning fluid was examined. The aim was to assess the hydrodynamic parameters, including stress, mass transfer, bubble size, and gas hold-up, upon conducting a scale-up study. The investigation was conducted through dynamic gassing-in, tomography, and computational fluid dynamics combined with population balance methods. It was observed that the coaxial bioreactor performance was strongly influenced by the agitator type. In addition, coaxial bioreactors are scalable in terms of shear environment and oxygen transfer rate.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-02990-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid hydrodynamic stress has a deterministic effect on the morphology of filamentous fungi. Although the coaxial mixer has been recognized as a suitable gas dispersion system for minimizing inhomogeneities within a bioreactor, its performance for achieving enhanced oxygen transfer while operating at a reduced shear environment has not been investigated yet, specifically upon scale-up. Therefore, the influence of the impeller type, aeration rate, and central impeller retrofitting on the efficacy of an abiotic coaxial system containing a shear-thinning fluid was examined. The aim was to assess the hydrodynamic parameters, including stress, mass transfer, bubble size, and gas hold-up, upon conducting a scale-up study. The investigation was conducted through dynamic gassing-in, tomography, and computational fluid dynamics combined with population balance methods. It was observed that the coaxial bioreactor performance was strongly influenced by the agitator type. In addition, coaxial bioreactors are scalable in terms of shear environment and oxygen transfer rate.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.