Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy.

IF 4.8 3区 医学 Q2 CELL BIOLOGY Inflammation Research Pub Date : 2024-05-01 Epub Date: 2024-04-02 DOI:10.1007/s00011-024-01864-x
Linna Wei, Liping Liu, Zudi Meng, Kai Qi, Xuehan Gao, Jihong Feng, Junmin Luo
{"title":"Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy.","authors":"Linna Wei, Liping Liu, Zudi Meng, Kai Qi, Xuehan Gao, Jihong Feng, Junmin Luo","doi":"10.1007/s00011-024-01864-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathogen responsible for tuberculosis is called Mycobacterium tuberculosis. Its interaction with macrophages has a significant impact on the onset and progression of the disease.</p><p><strong>Methods: </strong>The respiratory pathway allows Mycobacterium tuberculosis to enter the body's lungs where it battles immune cells before being infected latently or actively. In the progress of tuberculosis, Mycobacterium tuberculosis activates the body's immune system and creates inflammatory factors, which cause tissue inflammation to infiltrate and the creation of granulomas, which seriously harms the body. Toll-like receptors of macrophage can mediate host recognition of Mycobacterium tuberculosis, initiate immune responses, and participate in macrophage autophagy. New host-directed therapeutic approaches targeting autophagy for drug-resistant Mycobacterium tuberculosis have emerged, providing new ideas for the effective treatment of tuberculosis.</p><p><strong>Conclusions: </strong>In-depth understanding of the mechanisms by which macrophage autophagy interacts with intracellular Mycobacterium tuberculosis, as well as the study of potent and specific autophagy-regulating molecules, will lead to much-needed advances in drug discovery and vaccine design, which will improve the prevention and treatment of human tuberculosis.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-024-01864-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The pathogen responsible for tuberculosis is called Mycobacterium tuberculosis. Its interaction with macrophages has a significant impact on the onset and progression of the disease.

Methods: The respiratory pathway allows Mycobacterium tuberculosis to enter the body's lungs where it battles immune cells before being infected latently or actively. In the progress of tuberculosis, Mycobacterium tuberculosis activates the body's immune system and creates inflammatory factors, which cause tissue inflammation to infiltrate and the creation of granulomas, which seriously harms the body. Toll-like receptors of macrophage can mediate host recognition of Mycobacterium tuberculosis, initiate immune responses, and participate in macrophage autophagy. New host-directed therapeutic approaches targeting autophagy for drug-resistant Mycobacterium tuberculosis have emerged, providing new ideas for the effective treatment of tuberculosis.

Conclusions: In-depth understanding of the mechanisms by which macrophage autophagy interacts with intracellular Mycobacterium tuberculosis, as well as the study of potent and specific autophagy-regulating molecules, will lead to much-needed advances in drug discovery and vaccine design, which will improve the prevention and treatment of human tuberculosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巨噬细胞 Toll 样受体对结核分枝杆菌的识别及其在自噬中的作用
背景:结核病的病原体是结核分枝杆菌。它与巨噬细胞的相互作用对疾病的发生和发展有重要影响:方法:结核分枝杆菌通过呼吸途径进入人体肺部,在肺部与免疫细胞对抗,然后潜伏或主动感染。在结核病的发展过程中,结核分枝杆菌会激活人体的免疫系统,产生炎症因子,引起组织炎症浸润,形成肉芽肿,严重危害人体。巨噬细胞的 Toll 样受体能介导宿主识别结核分枝杆菌,启动免疫反应,并参与巨噬细胞的自噬。针对耐药结核分枝杆菌的宿主定向治疗新方法已经出现,为结核病的有效治疗提供了新思路:深入了解巨噬细胞自噬与细胞内结核分枝杆菌相互作用的机制,以及对强效和特异性自噬调节分子的研究,将为药物研发和疫苗设计带来急需的进展,从而改善人类结核病的预防和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inflammation Research
Inflammation Research 医学-免疫学
CiteScore
9.90
自引率
1.50%
发文量
134
审稿时长
3-8 weeks
期刊介绍: Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.
期刊最新文献
Gastrin-releasing peptide receptor antagonist RC-3095 inhibits Porphyromonas gingivalis lipopolysaccharide-accelerated atherosclerosis by suppressing inflammatory responses in endothelial cells and macrophages. Inhibition of glycolytic reprogramming suppresses innate immune-mediated inflammation in experimental amyotrophic lateral sclerosis. Calprotectin is regulated by IL-17A and induces steroid hyporesponsiveness in asthma. Treatment with lipoxin A4 improves influenza A infection outcome, induces macrophage reprogramming, anti-inflammatory and pro-resolutive responses. A novel molecular classification based on efferocytosis-related genes for predicting clinical outcome and treatment response in acute myeloid leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1