Identification of two critical amino acid residues in short-chain aldehyde-responsive odorant receptors.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of biochemistry Pub Date : 2024-07-31 DOI:10.1093/jb/mvae033
Reina Kanemaki, Toshiya Hayakawa, Haruto Kudo, Masafumi Yohda, Yosuke Fukutani
{"title":"Identification of two critical amino acid residues in short-chain aldehyde-responsive odorant receptors.","authors":"Reina Kanemaki, Toshiya Hayakawa, Haruto Kudo, Masafumi Yohda, Yosuke Fukutani","doi":"10.1093/jb/mvae033","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian odorant receptors (ORs) are crucial for detecting a broad spectrum of odorants, yet their functional expression poses a significant challenge, often requiring Receptor-transporting proteins (RTPs). This study examines mouse Olfr733 and Olfr732, which, despite high homology, show different functional expression profiles in heterologous cell systems. Our research aimed to identify key amino acids impacting Olfr733's functional expression. We discovered that G112FBW3.40 and L148PBW4.49 (Ballesteros-Weinstein numbering in superscript) substitutions in Olfr732 markedly enhance its RTP-independent expression and ligand responsiveness, mirroring Olfr733. These substitutions, particularly Phe112 and Leu148, are crucial for aldehyde recognition and membrane localization in Olfr733, respectively. While Olfr732-type ORs are conserved across species, Olfr733-types, unique to specific rodents, appear to have evolved from Olfr732, with Pro148 enhancing membrane expression and aldehyde sensitivity. Mouse ORs with ProBW4.49 tend to exhibit improved membrane expression compared to their paralogs, especially when co-expressed with RTP1S. This study concludes that the Pro residue in the fourth transmembrane domain significantly contributes to the structural stability of certain olfactory receptors, highlighting the intricate molecular mechanisms underlying OR functionality and evolution.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"119-130"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mammalian odorant receptors (ORs) are crucial for detecting a broad spectrum of odorants, yet their functional expression poses a significant challenge, often requiring Receptor-transporting proteins (RTPs). This study examines mouse Olfr733 and Olfr732, which, despite high homology, show different functional expression profiles in heterologous cell systems. Our research aimed to identify key amino acids impacting Olfr733's functional expression. We discovered that G112FBW3.40 and L148PBW4.49 (Ballesteros-Weinstein numbering in superscript) substitutions in Olfr732 markedly enhance its RTP-independent expression and ligand responsiveness, mirroring Olfr733. These substitutions, particularly Phe112 and Leu148, are crucial for aldehyde recognition and membrane localization in Olfr733, respectively. While Olfr732-type ORs are conserved across species, Olfr733-types, unique to specific rodents, appear to have evolved from Olfr732, with Pro148 enhancing membrane expression and aldehyde sensitivity. Mouse ORs with ProBW4.49 tend to exhibit improved membrane expression compared to their paralogs, especially when co-expressed with RTP1S. This study concludes that the Pro residue in the fourth transmembrane domain significantly contributes to the structural stability of certain olfactory receptors, highlighting the intricate molecular mechanisms underlying OR functionality and evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定短链醛反应气味受体中的两个关键氨基酸残基。
哺乳动物的气味受体(ORs)对检测各种气味至关重要,但它们的功能表达是一个巨大的挑战,通常需要受体转运蛋白(RTPs)。本研究对小鼠 Olfr733 和 Olfr732 进行了研究,尽管它们具有高度同源性,但在异源细胞系统中却显示出不同的功能表达谱。我们的研究旨在找出影响 Olfr733 功能表达的关键氨基酸。我们发现,Olfr732 中的 G112FBW3.40 和 L148PBW4.49(上标为 Ballesteros-Weinstein 编号)取代能显著增强其不依赖 RTP 的表达和配体反应性,这与 Olfr733 类似。这些置换,尤其是 Phe112 和 Leu148,分别对 Olfr733 的醛识别和膜定位至关重要。Olfr732型OR在不同物种中是保守的,而Olfr733型则是特定啮齿类动物特有的,似乎是从Olfr732进化而来,其中Pro148增强了膜表达和醛敏感性。具有 ProBW4.49 的小鼠 ORs 与其同类相比,往往表现出更好的膜表达,尤其是在与 RTP1S 共同表达时。本研究的结论是,第四跨膜结构域中的 Pro 残基对某些嗅觉受体的结构稳定性有显著的促进作用,凸显了构成嗅觉受体功能和进化的复杂分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
期刊最新文献
Maintenance of the Golgi Ribbon Structure by the KASH Protein Jaw1. Cellular senescence: mechanisms and relevance to cancer and aging. Bcl2l12, a novel protein interacting with Arf6, triggers Schwann cell differentiation program. Dietary methionine functions in proliferative zone maintenance and egg production via sams-1 in Caenorhabditis elegans. Variations associated with neurodevelopmental disorders affect ARF1 function and cortical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1