Efficient Corrections for Standardized Person-Fit Statistics.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2024-06-01 Epub Date: 2024-04-01 DOI:10.1007/s11336-024-09960-x
Kylie Gorney, Sandip Sinharay, Carol Eckerly
{"title":"Efficient Corrections for Standardized Person-Fit Statistics.","authors":"Kylie Gorney, Sandip Sinharay, Carol Eckerly","doi":"10.1007/s11336-024-09960-x","DOIUrl":null,"url":null,"abstract":"<p><p>Many popular person-fit statistics belong to the class of standardized person-fit statistics, T, and are assumed to have a standard normal null distribution. However, in practice, this assumption is incorrect since T is computed using (a) an estimated ability parameter and (b) a finite number of items. Snijders (Psychometrika 66(3):331-342, 2001) developed mean and variance corrections for T to account for the use of an estimated ability parameter. Bedrick (Psychometrika 62(2):191-199, 1997) and Molenaar and Hoijtink (Psychometrika 55(1):75-106, 1990) developed skewness corrections for T to account for the use of a finite number of items. In this paper, we combine these two lines of research and propose three new corrections for T that simultaneously account for the use of an estimated ability parameter and the use of a finite number of items. The new corrections are efficient in that they only require the analysis of the original data set and do not require the simulation or analysis of any additional data sets. We conducted a detailed simulation study and found that the new corrections are able to control the Type I error rate while also maintaining reasonable levels of power. A real data example is also included.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09960-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Many popular person-fit statistics belong to the class of standardized person-fit statistics, T, and are assumed to have a standard normal null distribution. However, in practice, this assumption is incorrect since T is computed using (a) an estimated ability parameter and (b) a finite number of items. Snijders (Psychometrika 66(3):331-342, 2001) developed mean and variance corrections for T to account for the use of an estimated ability parameter. Bedrick (Psychometrika 62(2):191-199, 1997) and Molenaar and Hoijtink (Psychometrika 55(1):75-106, 1990) developed skewness corrections for T to account for the use of a finite number of items. In this paper, we combine these two lines of research and propose three new corrections for T that simultaneously account for the use of an estimated ability parameter and the use of a finite number of items. The new corrections are efficient in that they only require the analysis of the original data set and do not require the simulation or analysis of any additional data sets. We conducted a detailed simulation study and found that the new corrections are able to control the Type I error rate while also maintaining reasonable levels of power. A real data example is also included.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标准化人称拟合统计的高效修正。
许多常用的人称拟合统计量都属于标准化人称拟合统计量 T,并假定其具有标准正态空分布。然而,在实践中,这一假设是不正确的,因为 T 是使用(a)估计的能力参数和(b)有限数量的项目计算得出的。Snijders(《心理测量学》第 66(3)期:331-342,2001 年)对 T 进行了均值和方差修正,以考虑估计能力参数的使用。Bedrick(Psychometrika 62(2):191-199,1997)和 Molenaar 与 Hoijtink(Psychometrika 55(1):75-106,1990)对 T 进行了偏度修正,以考虑有限项目数的使用。在本文中,我们将这两项研究结合起来,提出了三种新的 T 修正方法,同时考虑了估计能力参数的使用和有限项目数的使用。新的修正方法非常有效,因为它们只需要分析原始数据集,而不需要模拟或分析任何额外的数据集。我们进行了详细的模拟研究,发现新的修正方法既能控制 I 类错误率,又能保持合理的功率水平。我们还提供了一个真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Rejoinder to McNeish and Mislevy: What Does Psychological Measurement Require? Are Sum Scores a Great Accomplishment of Psychometrics or Intuitive Test Theory? Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Variational Estimation for Multidimensional Generalized Partial Credit Model. Proof of Reliability Convergence to 1 at Rate of Spearman-Brown Formula for Random Test Forms and Irrespective of Item Pool Dimensionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1