Adaptively leverage multiple real-world data sources for treatment effect estimation based on similarity.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-10-01 Epub Date: 2024-04-01 DOI:10.1080/10543406.2024.2330202
Meihua Long, Jiali Song, Zhiwei Rong, Lan Mi, Yuqin Song, Yan Hou
{"title":"Adaptively leverage multiple real-world data sources for treatment effect estimation based on similarity.","authors":"Meihua Long, Jiali Song, Zhiwei Rong, Lan Mi, Yuqin Song, Yan Hou","doi":"10.1080/10543406.2024.2330202","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of real-world data (RWD) into medical product development and evaluation has exhibited consistent growth. However, there is no universally adopted method of how much information to borrow from external data. This paper proposes a study design methodology called Tree-based Monte Carlo (TMC) that dynamically integrates patients from various RWD sources to calculate the treatment effect based on the similarity between clinical trial and RWD. Initially, a propensity score is developed to gauge the resemblance between clinical trial data and each real-world dataset. Utilizing this similarity metric, we construct a hierarchical clustering tree that delineates varying degrees of similarity between each RWD source and the clinical trial data. Ultimately, a Gaussian process methodology is employed across this hierarchical clustering framework to synthesize the projected treatment effects of the external group. Simulation result shows that our clustering tree could successfully identify similarity. Data sources exhibiting greater similarity with clinical trial are accorded higher weights in treatment estimation process, while less congruent sources receive comparatively lower emphasis. Compared with another Bayesian method, meta-analytic predictive prior (MAP), our proposed method's estimator is closer to the true value and has smaller bias.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"853-863"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2330202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of real-world data (RWD) into medical product development and evaluation has exhibited consistent growth. However, there is no universally adopted method of how much information to borrow from external data. This paper proposes a study design methodology called Tree-based Monte Carlo (TMC) that dynamically integrates patients from various RWD sources to calculate the treatment effect based on the similarity between clinical trial and RWD. Initially, a propensity score is developed to gauge the resemblance between clinical trial data and each real-world dataset. Utilizing this similarity metric, we construct a hierarchical clustering tree that delineates varying degrees of similarity between each RWD source and the clinical trial data. Ultimately, a Gaussian process methodology is employed across this hierarchical clustering framework to synthesize the projected treatment effects of the external group. Simulation result shows that our clustering tree could successfully identify similarity. Data sources exhibiting greater similarity with clinical trial are accorded higher weights in treatment estimation process, while less congruent sources receive comparatively lower emphasis. Compared with another Bayesian method, meta-analytic predictive prior (MAP), our proposed method's estimator is closer to the true value and has smaller bias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似性,自适应地利用多个真实世界数据源进行治疗效果估算。
将真实世界数据(RWD)纳入医疗产品开发和评估的趋势持续增长。然而,对于从外部数据中借用多少信息,目前还没有普遍采用的方法。本文提出了一种名为 "基于树的蒙特卡洛(TMC)"的研究设计方法,它能动态整合来自不同真实世界数据源的患者,并根据临床试验与真实世界数据的相似性计算治疗效果。首先,开发一个倾向得分来衡量临床试验数据与每个真实世界数据集之间的相似性。利用这一相似度指标,我们构建了一个分层聚类树,划分出每个 RWD 来源与临床试验数据之间不同程度的相似性。最终,我们在这个分层聚类框架中采用了高斯过程方法来综合外部组的预测治疗效果。模拟结果表明,我们的聚类树能成功识别相似性。在治疗估计过程中,与临床试验相似度较高的数据源会获得较高的权重,而相似度较低的数据源则会获得相对较低的权重。与另一种贝叶斯方法--元分析预测先验(MAP)相比,我们提出的方法的估计值更接近真实值,偏差更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1