Measurement and modelling of vapor–liquid phase equilibrium of 1,1-difluoroethane (R152a) + 1,1,2,3,3,3-hexafluoro-1-propene (R1216) at temperatures ranging from 283.15 K to 313.15 K
{"title":"Measurement and modelling of vapor–liquid phase equilibrium of 1,1-difluoroethane (R152a) + 1,1,2,3,3,3-hexafluoro-1-propene (R1216) at temperatures ranging from 283.15 K to 313.15 K","authors":"Jialiang Hua, Guogeng He, Dehua Cai, Zhihao Zhang, Zian Hao, Wei Yang","doi":"10.1016/j.jct.2024.107292","DOIUrl":null,"url":null,"abstract":"<div><p>Compared to pure refrigerants, mixed refrigerants can effectively fulfill the demands of high efficiency, safety, and environmental preservation. An efficient mixture can be created by combining environmentally safe and non-combustible refrigerants with low global warming potential (GWP) and high latent heat hydrofluorocarbons (HFCs) in precise ratios. For this investigation, an experimental apparatus was built to obtain vapor–liquid equilibrium (VLE) data for the R152a + R1216 mixture within temperatures of 283.15 to 313.15 K. To depict the VLE characteristics of the binary systems, the Peng-Robinson (PR) equation of state (EoS) was utilized with the van der Waals (vdW) mixing rule. And to compare, the Huron and Vidal first-order (HV) and the Wong-Sandler (WS) mixing rules were utilized alongside the PR EoS and the non-random two-liquid (NRTL) activity coefficient model to correlate the acquired data. The findings indicated that the models showed strong concurrence with the empirical data. The binary mixture displays a near-azeotropic phenomenon when the mole fraction of R152a is below 0.65. The azeotropic point is fall within the experimental temperature range when the R152a liquid-phase has a mole fraction between 0.3069 and 0.4104.</p></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"195 ","pages":"Article 107292"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424000454","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to pure refrigerants, mixed refrigerants can effectively fulfill the demands of high efficiency, safety, and environmental preservation. An efficient mixture can be created by combining environmentally safe and non-combustible refrigerants with low global warming potential (GWP) and high latent heat hydrofluorocarbons (HFCs) in precise ratios. For this investigation, an experimental apparatus was built to obtain vapor–liquid equilibrium (VLE) data for the R152a + R1216 mixture within temperatures of 283.15 to 313.15 K. To depict the VLE characteristics of the binary systems, the Peng-Robinson (PR) equation of state (EoS) was utilized with the van der Waals (vdW) mixing rule. And to compare, the Huron and Vidal first-order (HV) and the Wong-Sandler (WS) mixing rules were utilized alongside the PR EoS and the non-random two-liquid (NRTL) activity coefficient model to correlate the acquired data. The findings indicated that the models showed strong concurrence with the empirical data. The binary mixture displays a near-azeotropic phenomenon when the mole fraction of R152a is below 0.65. The azeotropic point is fall within the experimental temperature range when the R152a liquid-phase has a mole fraction between 0.3069 and 0.4104.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.