An experimental and computational thermochemical study is reported focus on the relationship between the energetic properties, the structural characteristics and the inherent reactivity of three thiothiadiazoles: 2-amino-5-(methylthio-)-1,3,4-thiadiazole, 2-amino-5-(ethylthio-)-1,3,4-thiadiazole and 2-mercapto-5-methylthio-1,3,4-thiadiazole. From the DSC measurements, the enthalpies of fusion and the respective onset temperatures were determined. The standard molar energies of combustion of the (alkylthio)-1,3,4-thiadiazoles were determined by rotating bomb combustion calorimetry. The corresponding standard molar enthalpies of sublimation, at T = 298.15 K, were derived from high-temperature Calvet microcalorimetry measurements and the study of the dependence of the compound’s vapour pressures with the temperature, using the Knudsen-effusion technique. The combination of these experimental results enables the calculation of the standard molar enthalpies of formation in the gaseous state, at T = 298.15 K, which are discussed in terms of structural contributions. The latter property was also determined from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. The computed values are in good agreement with the experimental ones. In addition, a conformational and tautomeric study was conducted using the same approach, in order to provide insight on the amino/imino and thiol/thione tautomerism of the compounds studied. The amino form predominates in amino-thiadiazoles, while the thione form prevails in mercaptothiadiazole. Moreover, the relative thermodynamic stability of each compound was also evaluated showing that in both solid and gas phases, the most stable species is the mercaptothiadiazole (in its thione form). The thermochemical results of the (alkylthio)-1,3,4-thiadiazoles show a good agreement with the NBO (natural bond orbitals) analysis results.