Florent Purnode, François Henrotte, Gilles Louppe, Christophe Geuzaine
{"title":"Neural network-based simulation of fields and losses in electrical machines with ferromagnetic laminated cores","authors":"Florent Purnode, François Henrotte, Gilles Louppe, Christophe Geuzaine","doi":"10.1002/jnm.3226","DOIUrl":null,"url":null,"abstract":"<p>Due to the distribution of eddy currents inside ferromagnetic laminations, the accurate modeling of magnetic fields and losses in the laminated cores of electrical machines requires resolving individual laminations with a fine 3D discretization. This yields finite element models so huge and costly that they are unusable in daily industrial R&D. In consequence, hysteresis and eddy currents in laminations are often simply disregarded in the modeling: the laminated core is assumed to be made of a reversible (non lossy) saturable material, and magnetic losses are evaluated a posteriori, by means of Steinmetz–Bertotti like empirical formulas. However, in a context where industry is struggling to minutely assess the impact of magnetic losses on their devices, this simplified approach is more and more regarded as inaccurate and unsatisfactory. This article proposes a solution to this issue, based on homogenization and on detailed mesoscopic simulations of eddy currents and hysteresis inside the laminations. The proposed approach results in a close-to-conventional 2D magnetic vector potential finite element model, but equipped with an irreversible parametric material law to represent the ferromagnetic stack. In each finite element, the parameters of the law are obtained from a neural network trained to best fit the detailed mesoscopic simulations of the laminations subjected to the same local magnetic field. This way, all aspects of the irreversible ferromagnetic response are appropriately accounted for in the finite element simulation, but at a computational cost drastically reduced with regard to a brute force 3D calculation, and comparable to that of conventional 2D finite element simulations.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the distribution of eddy currents inside ferromagnetic laminations, the accurate modeling of magnetic fields and losses in the laminated cores of electrical machines requires resolving individual laminations with a fine 3D discretization. This yields finite element models so huge and costly that they are unusable in daily industrial R&D. In consequence, hysteresis and eddy currents in laminations are often simply disregarded in the modeling: the laminated core is assumed to be made of a reversible (non lossy) saturable material, and magnetic losses are evaluated a posteriori, by means of Steinmetz–Bertotti like empirical formulas. However, in a context where industry is struggling to minutely assess the impact of magnetic losses on their devices, this simplified approach is more and more regarded as inaccurate and unsatisfactory. This article proposes a solution to this issue, based on homogenization and on detailed mesoscopic simulations of eddy currents and hysteresis inside the laminations. The proposed approach results in a close-to-conventional 2D magnetic vector potential finite element model, but equipped with an irreversible parametric material law to represent the ferromagnetic stack. In each finite element, the parameters of the law are obtained from a neural network trained to best fit the detailed mesoscopic simulations of the laminations subjected to the same local magnetic field. This way, all aspects of the irreversible ferromagnetic response are appropriately accounted for in the finite element simulation, but at a computational cost drastically reduced with regard to a brute force 3D calculation, and comparable to that of conventional 2D finite element simulations.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.