Neural network-based simulation of fields and losses in electrical machines with ferromagnetic laminated cores

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Numerical Modelling-Electronic Networks Devices and Fields Pub Date : 2024-04-02 DOI:10.1002/jnm.3226
Florent Purnode, François Henrotte, Gilles Louppe, Christophe Geuzaine
{"title":"Neural network-based simulation of fields and losses in electrical machines with ferromagnetic laminated cores","authors":"Florent Purnode,&nbsp;François Henrotte,&nbsp;Gilles Louppe,&nbsp;Christophe Geuzaine","doi":"10.1002/jnm.3226","DOIUrl":null,"url":null,"abstract":"<p>Due to the distribution of eddy currents inside ferromagnetic laminations, the accurate modeling of magnetic fields and losses in the laminated cores of electrical machines requires resolving individual laminations with a fine 3D discretization. This yields finite element models so huge and costly that they are unusable in daily industrial R&amp;D. In consequence, hysteresis and eddy currents in laminations are often simply disregarded in the modeling: the laminated core is assumed to be made of a reversible (non lossy) saturable material, and magnetic losses are evaluated a posteriori, by means of Steinmetz–Bertotti like empirical formulas. However, in a context where industry is struggling to minutely assess the impact of magnetic losses on their devices, this simplified approach is more and more regarded as inaccurate and unsatisfactory. This article proposes a solution to this issue, based on homogenization and on detailed mesoscopic simulations of eddy currents and hysteresis inside the laminations. The proposed approach results in a close-to-conventional 2D magnetic vector potential finite element model, but equipped with an irreversible parametric material law to represent the ferromagnetic stack. In each finite element, the parameters of the law are obtained from a neural network trained to best fit the detailed mesoscopic simulations of the laminations subjected to the same local magnetic field. This way, all aspects of the irreversible ferromagnetic response are appropriately accounted for in the finite element simulation, but at a computational cost drastically reduced with regard to a brute force 3D calculation, and comparable to that of conventional 2D finite element simulations.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the distribution of eddy currents inside ferromagnetic laminations, the accurate modeling of magnetic fields and losses in the laminated cores of electrical machines requires resolving individual laminations with a fine 3D discretization. This yields finite element models so huge and costly that they are unusable in daily industrial R&D. In consequence, hysteresis and eddy currents in laminations are often simply disregarded in the modeling: the laminated core is assumed to be made of a reversible (non lossy) saturable material, and magnetic losses are evaluated a posteriori, by means of Steinmetz–Bertotti like empirical formulas. However, in a context where industry is struggling to minutely assess the impact of magnetic losses on their devices, this simplified approach is more and more regarded as inaccurate and unsatisfactory. This article proposes a solution to this issue, based on homogenization and on detailed mesoscopic simulations of eddy currents and hysteresis inside the laminations. The proposed approach results in a close-to-conventional 2D magnetic vector potential finite element model, but equipped with an irreversible parametric material law to represent the ferromagnetic stack. In each finite element, the parameters of the law are obtained from a neural network trained to best fit the detailed mesoscopic simulations of the laminations subjected to the same local magnetic field. This way, all aspects of the irreversible ferromagnetic response are appropriately accounted for in the finite element simulation, but at a computational cost drastically reduced with regard to a brute force 3D calculation, and comparable to that of conventional 2D finite element simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的铁磁叠片铁芯电机场和损耗模拟
由于铁磁叠片内部存在涡流分布,要对电机叠片铁芯中的磁场和损耗进行精确建模,需要对单个叠片进行精细的三维离散化处理。这导致有限元模型过于庞大和昂贵,以至于在日常工业研发中无法使用。因此,在建模过程中,通常会简单地忽略叠片中的磁滞和涡流:假设叠片铁芯由可逆(无损耗)饱和材料制成,并通过类似 Steinmetz-Bertotti 的经验公式对磁损耗进行事后评估。然而,在工业界正努力评估磁损耗对设备影响的背景下,这种简化方法越来越被认为是不准确和不令人满意的。本文针对这一问题提出了一种解决方案,该方案基于均质化以及对层压板内部涡流和磁滞的详细介观模拟。所提出的方法产生了一个接近传统的二维磁矢量势能有限元模型,但配备了一个不可逆参数材料定律来表示铁磁叠层。在每个有限元中,该定律的参数都是从经过训练的神经网络中获得的,该神经网络最适合对受到相同局部磁场作用的叠片进行详细的介观模拟。这样,不可逆铁磁响应的所有方面都在有限元模拟中得到了适当考虑,但计算成本却比蛮力三维计算大幅降低,与传统的二维有限元模拟相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
期刊最新文献
Subthreshold Drain Current Model of Cylindrical Gate All-Around Junctionless Transistor With Three Different Gate Materials Hybrid TLM-CTLM Test Structure for Determining Specific Contact Resistivity of Ohmic Contacts Optimal Design of Smart Antenna Arrays for Beamforming, Direction Finding, and Null Placement Using the Soft Computing Method A Nonlinear Model of RF Switch Device Based on Common Gate GaAs FETs Analysis of etched drain based Cylindrical agate-all-around tunnel field effect transistor based static random access memory cell design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1