Isha Pali , Mohammad Abdussami , Ruhul Amin , Taher Al-Shehari , Muna Al-Razgan , Taha Alfakih
{"title":"S2DN: Design of robust authentication protocol with session key establishment in multi-controller based software-defined VANETs","authors":"Isha Pali , Mohammad Abdussami , Ruhul Amin , Taher Al-Shehari , Muna Al-Razgan , Taha Alfakih","doi":"10.1016/j.vehcom.2024.100767","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in technology and the adoption of innovative developments have significantly simplified our lives. One notable innovation in the networking domain is Software Defined Networking (SDN), which revolutionizes the network layer by enabling centralized network administration and re-programmability. SDN technology finds application in diverse fields such as Vehicular Ad-hoc Networks (VANETs), Wireless Sensor Networks (WSNs), Internet of Things (IoT) communications, and cloud-fog computing. The integration of SDN technology into VANET systems has notably improved network performance but has also raised security concerns. To tackle this issue, this paper focuses on devising an authentication mechanism to facilitate secure communication across various VANET levels by establishing a shared session key. Moreover, the research proposes a method to mitigate the challenge of single points of failure, a typically difficult issue to address. To ensure the security of all confidential information during protocol execution, simulations are conducted using the Scyther tool. Additionally, an informal security analysis is performed, demonstrating the robustness of the proposed protocol. The proposed protocol also performs outstanding in terms of performance results</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"47 ","pages":"Article 100767"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000421","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in technology and the adoption of innovative developments have significantly simplified our lives. One notable innovation in the networking domain is Software Defined Networking (SDN), which revolutionizes the network layer by enabling centralized network administration and re-programmability. SDN technology finds application in diverse fields such as Vehicular Ad-hoc Networks (VANETs), Wireless Sensor Networks (WSNs), Internet of Things (IoT) communications, and cloud-fog computing. The integration of SDN technology into VANET systems has notably improved network performance but has also raised security concerns. To tackle this issue, this paper focuses on devising an authentication mechanism to facilitate secure communication across various VANET levels by establishing a shared session key. Moreover, the research proposes a method to mitigate the challenge of single points of failure, a typically difficult issue to address. To ensure the security of all confidential information during protocol execution, simulations are conducted using the Scyther tool. Additionally, an informal security analysis is performed, demonstrating the robustness of the proposed protocol. The proposed protocol also performs outstanding in terms of performance results
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.