Patient-specific numerical simulation of the bone healing process including implant materials and gait conditions

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-04-03 DOI:10.1016/j.finel.2024.104153
A. Martínez-Martínez , E. Nadal , D. Bonete , O. Allix , J.J. Ródenas
{"title":"Patient-specific numerical simulation of the bone healing process including implant materials and gait conditions","authors":"A. Martínez-Martínez ,&nbsp;E. Nadal ,&nbsp;D. Bonete ,&nbsp;O. Allix ,&nbsp;J.J. Ródenas","doi":"10.1016/j.finel.2024.104153","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulations in biomechanics, particularly in bone healing, present a cost-effective option compared to experiments that demand prolonged observations with human or with animal models. However, to define in-silico simulations of the bone healing process requires considering multiple factors, such as the implant design and patient’s characteristics. As a result, the current challenge is integrating different numerical methodologies to simulate bone healing, aiming to facilitate the emergence of innovative clinical treatments and new implant designs.</p><p>In this paper, we present a patient-specific numerical methodology to simulate the bone healing process, able to consider patient’s load conditions and bone density distribution provided by CT-scans. The main novelty is the combination of the Cartesian grid Finite Element Method (cgFEM) with a bone callus healing model, complemented by a load-condition optimisation scheme to relate implant materials and load conditions while ensuring successful healing outcome.</p><p>This numerical methodology creates a finite element model based on the patient’s medical image, serving as a virtual testing tool for investigating the influence of implant materials on gait pattern requirements to ensure an optimal healing outcome. In practice, a personalised bone fracture model was employed to evaluate four distinct implant materials: two conventional materials (stainless steel and titanium) and two bioabsorbable candidates (polylactic acid plastic (PLA) and magnesium). The results offer personalised optimal load conditions for each studied material, showcasing the potential of in-silico studies in minimising uncertainties associated with exploring new clinical treatments.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000477/pdfft?md5=cb369afac55c556e3007c98e1e342ad3&pid=1-s2.0-S0168874X24000477-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulations in biomechanics, particularly in bone healing, present a cost-effective option compared to experiments that demand prolonged observations with human or with animal models. However, to define in-silico simulations of the bone healing process requires considering multiple factors, such as the implant design and patient’s characteristics. As a result, the current challenge is integrating different numerical methodologies to simulate bone healing, aiming to facilitate the emergence of innovative clinical treatments and new implant designs.

In this paper, we present a patient-specific numerical methodology to simulate the bone healing process, able to consider patient’s load conditions and bone density distribution provided by CT-scans. The main novelty is the combination of the Cartesian grid Finite Element Method (cgFEM) with a bone callus healing model, complemented by a load-condition optimisation scheme to relate implant materials and load conditions while ensuring successful healing outcome.

This numerical methodology creates a finite element model based on the patient’s medical image, serving as a virtual testing tool for investigating the influence of implant materials on gait pattern requirements to ensure an optimal healing outcome. In practice, a personalised bone fracture model was employed to evaluate four distinct implant materials: two conventional materials (stainless steel and titanium) and two bioabsorbable candidates (polylactic acid plastic (PLA) and magnesium). The results offer personalised optimal load conditions for each studied material, showcasing the potential of in-silico studies in minimising uncertainties associated with exploring new clinical treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对患者的骨愈合过程数值模拟,包括植入材料和步态条件
与需要长时间观察人体或动物模型的实验相比,生物力学中的数值模拟,尤其是骨愈合方面的数值模拟,是一种具有成本效益的选择。然而,要对骨愈合过程进行室内模拟,需要考虑多种因素,如植入物的设计和患者的特征。因此,目前的挑战是整合不同的数值方法来模拟骨愈合,以促进创新性临床治疗和新型种植体设计的出现。在本文中,我们提出了一种针对患者的数值方法来模拟骨愈合过程,该方法能够考虑患者的负荷条件和 CT 扫描提供的骨密度分布。这种数值方法根据患者的医学影像创建有限元模型,作为虚拟测试工具,用于研究植入材料对步态要求的影响,以确保最佳愈合效果。在实践中,我们采用了个性化骨骨折模型来评估四种不同的植入材料:两种传统材料(不锈钢和钛)和两种生物可吸收材料(聚乳酸塑料和镁)。结果为每种研究材料提供了个性化的最佳载荷条件,展示了在探索新的临床治疗方法过程中,将不确定性降至最低的潜在室内研究能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
A two-level semi-hybrid-mixed model for Stokes–Brinkman flows with divergence-compatible velocity–pressure elements A non-intrusive multiscale framework for 2D analysis of local features by GFEM — A thorough parameter investigation On the Gauss–Legendre quadrature rule of deep energy method for one-dimensional problems in solid mechanics A modular finite element approach to saturated poroelasticity dynamics: Fluid–solid coupling with Neo-Hookean material and incompressible flow Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1