Shelby A. Keye , Christopher J. Kinder , Laura M. Rosok , Corinne N. Cannavale , Anne Walk , Naiman A. Khan
{"title":"Neuroelectric indices of pre-motor planning and adiposity are selectively related to balance in children","authors":"Shelby A. Keye , Christopher J. Kinder , Laura M. Rosok , Corinne N. Cannavale , Anne Walk , Naiman A. Khan","doi":"10.1016/j.humov.2024.103216","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Motor function and weight status are components of physical fitness that have been implicated in childhood motor and cognitive development. The lateralized readiness potential (LRP), an index of motor planning and action, can provide context surrounding relationships between fitness and brain activity underlying cognitive and motor functions. This study evaluated the relationship between the LRP and motor skills, as well as associations between weight status and neural and behavioral motor functions.</p></div><div><h3>Methods</h3><p>Children aged 7–13 (<em>n</em> = 35) participated in a cross-sectional study, using the Movement Assessment Battery for Children 2nd edition (MABC-2) to assess balance, manual dexterity, and aiming/catching. The stimulus- (LRP-S) and response-locked (LRP-R) LRPs were elicited from a modified flanker task. Stepwise regressions tested the association between LRPs and MABC-2 components. Linear regressions were conducted to examine BMI and %Fat in relation to LRPs and MABC-2 components.</p></div><div><h3>Results</h3><p>Analyses revealed that LRP-S mean amplitude difference (β = 0.401, <em>P</em> = 0.042) and reaction time interference scores (β = 0.545, <em>P</em> = 0.004) were positively associated with balance, after adjusting for covariates. The LRP-S and interference scores did not predict other MABC-2 outcomes and LRP-R did not predict any MABC-2 components. Further, %Fat (β = −0.439, <em>P</em> = 0.044), not BMI (β = −0.364, <em>P</em> = 0.082), only predicted balance.</p></div><div><h3>Conclusion</h3><p>We found that changes in the LRP-S amplitude were positively associated with balance, and %Fat was negatively related to balance. This evidence is that fitness components such as weight status and coordination are related to neural markers of motor function which may be useful in intervention designs aimed to improve brain function via improvements in physical fitness and health behaviors.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"95 ","pages":"Article 103216"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167945724000393/pdfft?md5=1588e96fcaa4025231a991690de1bcb3&pid=1-s2.0-S0167945724000393-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000393","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Motor function and weight status are components of physical fitness that have been implicated in childhood motor and cognitive development. The lateralized readiness potential (LRP), an index of motor planning and action, can provide context surrounding relationships between fitness and brain activity underlying cognitive and motor functions. This study evaluated the relationship between the LRP and motor skills, as well as associations between weight status and neural and behavioral motor functions.
Methods
Children aged 7–13 (n = 35) participated in a cross-sectional study, using the Movement Assessment Battery for Children 2nd edition (MABC-2) to assess balance, manual dexterity, and aiming/catching. The stimulus- (LRP-S) and response-locked (LRP-R) LRPs were elicited from a modified flanker task. Stepwise regressions tested the association between LRPs and MABC-2 components. Linear regressions were conducted to examine BMI and %Fat in relation to LRPs and MABC-2 components.
Results
Analyses revealed that LRP-S mean amplitude difference (β = 0.401, P = 0.042) and reaction time interference scores (β = 0.545, P = 0.004) were positively associated with balance, after adjusting for covariates. The LRP-S and interference scores did not predict other MABC-2 outcomes and LRP-R did not predict any MABC-2 components. Further, %Fat (β = −0.439, P = 0.044), not BMI (β = −0.364, P = 0.082), only predicted balance.
Conclusion
We found that changes in the LRP-S amplitude were positively associated with balance, and %Fat was negatively related to balance. This evidence is that fitness components such as weight status and coordination are related to neural markers of motor function which may be useful in intervention designs aimed to improve brain function via improvements in physical fitness and health behaviors.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."