Continuous production of ultratough semiconducting polymer fibers with high electronic performance

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-04-03 DOI:10.1126/sciadv.adk0647
Zhi Zhang, Peiyun Li, Miao Xiong, Liang Zhang, Jupeng Chen, Xun Lei, Xiran Pan, Xiu Wang, Xin-Yu Deng, Weiyu Shen, Zi Mei, Kai-Kai Liu, Guangchao Liu, Zhen Huang, Shixian Lv, Yuanlong Shao, Ting Lei
{"title":"Continuous production of ultratough semiconducting polymer fibers with high electronic performance","authors":"Zhi Zhang,&nbsp;Peiyun Li,&nbsp;Miao Xiong,&nbsp;Liang Zhang,&nbsp;Jupeng Chen,&nbsp;Xun Lei,&nbsp;Xiran Pan,&nbsp;Xiu Wang,&nbsp;Xin-Yu Deng,&nbsp;Weiyu Shen,&nbsp;Zi Mei,&nbsp;Kai-Kai Liu,&nbsp;Guangchao Liu,&nbsp;Zhen Huang,&nbsp;Shixian Lv,&nbsp;Yuanlong Shao,&nbsp;Ting Lei","doi":"10.1126/sciadv.adk0647","DOIUrl":null,"url":null,"abstract":"<div >Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (&gt;200 megapascals) and toughness (&gt;80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adk0647","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adk0647","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续生产具有高电子性能的超粗半导体聚合物纤维
共轭聚合物具有良好的光电特性,但其脆性和较差的机械特性阻碍了将其制成耐用的纤维和纺织品。在此,我们报告了一种利用流动增强结晶(FLEX)方法连续生产高强度、超韧共轭聚合物纤维的通用方法。与传统的半导体聚合物纤维和薄膜相比,这些纤维的拉伸强度(200 兆帕)和韧性(80 兆焦耳/立方米)高出一个数量级,性能优于许多合成纤维,可进行规模化生产。在用作可拉伸导体、热电、晶体管和传感器时,这些纤维还表现出独特的应变增强电子特性和优异的性能。这项工作不仅强调了流体机械效应对共轭聚合物结晶和机械性能的影响,还为将这些功能纤维集成到可穿戴电子设备中开辟了令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
AntimiR treatment corrects myotonic dystrophy primary cell defects across several CTG repeat expansions with a dual mechanism of action. Architectures of photosynthetic RC-LH1 supercomplexes from Rhodobacter blasticus. Asymmetric one-carbon ring expansion of diverse N-heterocycles via copper-catalyzed diyne cyclization. Bidirectional regulation of motor circuits using magnetogenetic gene therapy. Bring me the head of Arthropleura.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1