Analysis of aged microplastics: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2024-04-04 DOI:10.1007/s10311-024-01731-5
Yanqi Shi, Linping Shi, Hexinyue Huang, Kefu Ye, Luming Yang, Zeena Wang, Yifan Sun, Dunzhu Li, Yunhong Shi, Liwen Xiao, Shixiang Gao
{"title":"Analysis of aged microplastics: a review","authors":"Yanqi Shi,&nbsp;Linping Shi,&nbsp;Hexinyue Huang,&nbsp;Kefu Ye,&nbsp;Luming Yang,&nbsp;Zeena Wang,&nbsp;Yifan Sun,&nbsp;Dunzhu Li,&nbsp;Yunhong Shi,&nbsp;Liwen Xiao,&nbsp;Shixiang Gao","doi":"10.1007/s10311-024-01731-5","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1861 - 1888"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01731-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01731-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
老化微塑料分析:综述
微塑料是一种新出现的污染物,在阳光照射、机械力、温度变化和生物体存在等环境条件下会逐渐老化。由于老化会改变微塑料的特性,如其自身的毒性和被困污染物的毒性,因此需要先进的方法来分析微塑料。在此,我们将回顾分析微塑料老化的方法,重点关注老化过程、定性鉴定、定量表征和化学计量学。定性鉴定是通过机械技术、热技术(如热降解和气相色谱-质谱法)和光谱技术(如红外、拉曼、荧光和激光技术)来完成的。定量表征可通过显微镜和质谱法完成。微塑料老化会导致一系列表面物理变化、生物膜形成、化学氧化、热交替和机械退化。通过机械和热性能的变化可以区分老化的微塑料。红外光谱和拉曼光谱对复杂环境样本中的微塑料进行化学鉴定既快速又灵敏。将这两种技术结合起来可实现准确的检测和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Hydrothermal liquefaction for producing liquid fuels and chemicals from biomass-derived platform compounds: a review Iron-modified biochar for enhanced removal of ciprofloxacin and amoxicillin in wastewater Possible formation of long-lived photo-oxidants by photolysis of organic matter phenols in sunlit waters Microplastics alter crystal growth in coral skeleton structures Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1