{"title":"A hybrid 3D-printed model for lateral canthotomy simulation","authors":"Getaw Worku Hassen , Anisha Duvvi , Evan Yates , Yitzchak Goldsmith , Mohammed Ganji , Gregory McWhir , Jaspreet Singh , Ceilim Kim , Getnet Tolera , Sonja Jauhal , Selome F. Yewedalsew , Mauricio Gonzalez Aries , Shterni Seligson , Hossein Kalantari","doi":"10.1016/j.stlm.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Compartment syndrome is a medical emergency. It should be diagnosed promptly, and therapeutic measures should be taken to avoid limb ischemia. Measurement of compartment pressure is extremely important.</p></div><div><h3>Model</h3><p>Knowledge about compartments and familiarity with the pressure monitoring device are important to diagnose acute compartment syndrome properly. Simulations provide an opportunity to learn the device and practice the procedure. Given their lower cost and the possibility of frequent reproduction, simulations using 3D-printed material are gaining popularity. We propose a simple low-fidelity model using a silicone-based lower leg soft tissue, 3D-printed tibia and fibula, Foley catheter, and syringes.</p></div><div><h3>Conclusion</h3><p>This low-fidelity simulator helps to improve procedural skills and retention through repeated practice.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"14 ","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000122/pdfft?md5=42ea00b93663d3bebbb3402c293df727&pid=1-s2.0-S2666964124000122-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964124000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Compartment syndrome is a medical emergency. It should be diagnosed promptly, and therapeutic measures should be taken to avoid limb ischemia. Measurement of compartment pressure is extremely important.
Model
Knowledge about compartments and familiarity with the pressure monitoring device are important to diagnose acute compartment syndrome properly. Simulations provide an opportunity to learn the device and practice the procedure. Given their lower cost and the possibility of frequent reproduction, simulations using 3D-printed material are gaining popularity. We propose a simple low-fidelity model using a silicone-based lower leg soft tissue, 3D-printed tibia and fibula, Foley catheter, and syringes.
Conclusion
This low-fidelity simulator helps to improve procedural skills and retention through repeated practice.