{"title":"Parameter study and identification of DEM modeling for varied sand moisture content based on bulldozing experiment","authors":"Naohiro Sato, Genya Ishigami","doi":"10.1016/j.jterra.2024.100971","DOIUrl":null,"url":null,"abstract":"<div><p>The discrete element method (DEM) has been widely used to simulate varied sand particles interacting with earthmoving machines. However, past research using DEM barely addressed accurate verification and validation for different sand moisture content. Therefore, the main purpose of this paper is to reveal the range of key parameters of an adhesive force model used in the DEM simulation corresponding to the specific sand moisture content. We considered the bulldozing phenomenon to be typical earthmoving work and performed the bulldozing experiments under different sand moisture levels to investigate the bulldozing force variations. Subsequently, the DEM simulation with an adhesive force model calculated the bulldozing force corresponding to the experimental results. The values for two adhesive parameters, i.e., a scaling magnitude and the maximum adhesive distance between particles, were adjusted such that the maximum bulldozing force calculated in the DEM coincides with that of the experiments under different moisture contents. The experimental verification of the DEM revealed the relationship curves between these two key parameters corresponding to the different moisture content. The relationship obtained in this paper implies that the DEM simulation carefully adjusting the adhesive force parameters can reproduce machine interaction on moist sand environments accurately.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000132","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The discrete element method (DEM) has been widely used to simulate varied sand particles interacting with earthmoving machines. However, past research using DEM barely addressed accurate verification and validation for different sand moisture content. Therefore, the main purpose of this paper is to reveal the range of key parameters of an adhesive force model used in the DEM simulation corresponding to the specific sand moisture content. We considered the bulldozing phenomenon to be typical earthmoving work and performed the bulldozing experiments under different sand moisture levels to investigate the bulldozing force variations. Subsequently, the DEM simulation with an adhesive force model calculated the bulldozing force corresponding to the experimental results. The values for two adhesive parameters, i.e., a scaling magnitude and the maximum adhesive distance between particles, were adjusted such that the maximum bulldozing force calculated in the DEM coincides with that of the experiments under different moisture contents. The experimental verification of the DEM revealed the relationship curves between these two key parameters corresponding to the different moisture content. The relationship obtained in this paper implies that the DEM simulation carefully adjusting the adhesive force parameters can reproduce machine interaction on moist sand environments accurately.
离散元素法(DEM)已被广泛用于模拟各种沙粒与推土机的相互作用。然而,过去使用 DEM 进行的研究几乎没有涉及对不同沙子含水量的精确验证和确认。因此,本文的主要目的是揭示在 DEM 模拟中使用的粘着力模型的关键参数范围与特定沙子含水量的对应关系。我们将推土现象视为典型的土方工程,并在不同沙子湿度下进行了推土实验,以研究推土力的变化。随后,利用粘附力模型进行 DEM 仿真,计算出与实验结果相对应的推土力。调整了两个粘附参数的值,即缩放幅度和颗粒间的最大粘附距离,使 DEM 计算出的最大推土力与不同含水量下的实验结果相吻合。DEM 的实验验证揭示了这两个关键参数与不同含水量之间的关系曲线。本文得出的关系曲线表明,通过仔细调整粘附力参数,DEM 仿真能够准确再现潮湿砂土环境下的机器相互作用。
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.