Peng Cheng , Yingzi Li , Rui Lin , Yifan Hu , Xiaodong Gao , Jianqiang Qian , Wendong Sun , Quan Yuan
{"title":"Adaptive under-sampling strategy for fast imaging in compressive sensing-based atomic force microscopy","authors":"Peng Cheng , Yingzi Li , Rui Lin , Yifan Hu , Xiaodong Gao , Jianqiang Qian , Wendong Sun , Quan Yuan","doi":"10.1016/j.ultramic.2024.113964","DOIUrl":null,"url":null,"abstract":"<div><p>Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"261 ","pages":"Article 113964"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000433","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.