首页 > 最新文献

Ultramicroscopy最新文献

英文 中文
Quantifying elemental colocation in nanostructured materials using energy-dispersive X-ray spectroscopy
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-02-26 DOI: 10.1016/j.ultramic.2025.114123
Kristiaan H. Helfferich , Johannes D. Meeldijk , Marijn A. van Huis , Jessi E.S. van der Hoeven , Petra E. de Jongh
Multicomponent nanostructured materials are key amongst others for energy and catalysis applications. The nanoscale proximity of different metals critically determines the performance of these functional materials. However, it is difficult to study the spatial distribution of different elements at the nanoscale, especially achieving a statistically relevant assessment. Additionally, common support materials like metal oxides are sensitive to electron beam damage when using high resolution local techniques, such as transmission electron microscopy. We present a robust strategy to quantitatively assess elemental distributions in 3D nanostructured beam-sensitive samples. Key elements are resin embedding, and elemental co-localisation building on a combination of electron tomography and energy-dispersive X-ray spectroscopy. We showcase the methodology with ∼ 3 nm Pd-Ni nanoparticles supported on mesoporous silica. Epoxy resin-embedding ensured sufficient sample stability under the electron beam for tomography-based quantification of different mano- and mesoscale elemental distributions in these samples. Reliable co-location results were obtained and practical guidelines are provided for acquisition and post-processing, relevant for elemental overlap analysis in multi-metallic samples.
{"title":"Quantifying elemental colocation in nanostructured materials using energy-dispersive X-ray spectroscopy","authors":"Kristiaan H. Helfferich ,&nbsp;Johannes D. Meeldijk ,&nbsp;Marijn A. van Huis ,&nbsp;Jessi E.S. van der Hoeven ,&nbsp;Petra E. de Jongh","doi":"10.1016/j.ultramic.2025.114123","DOIUrl":"10.1016/j.ultramic.2025.114123","url":null,"abstract":"<div><div>Multicomponent nanostructured materials are key amongst others for energy and catalysis applications. The nanoscale proximity of different metals critically determines the performance of these functional materials. However, it is difficult to study the spatial distribution of different elements at the nanoscale, especially achieving a statistically relevant assessment. Additionally, common support materials like metal oxides are sensitive to electron beam damage when using high resolution local techniques, such as transmission electron microscopy. We present a robust strategy to quantitatively assess elemental distributions in 3D nanostructured beam-sensitive samples. Key elements are resin embedding, and elemental co-localisation building on a combination of electron tomography and energy-dispersive X-ray spectroscopy. We showcase the methodology with ∼ 3 nm Pd-Ni nanoparticles supported on mesoporous silica. Epoxy resin-embedding ensured sufficient sample stability under the electron beam for tomography-based quantification of different mano- and mesoscale elemental distributions in these samples. Reliable co-location results were obtained and practical guidelines are provided for acquisition and post-processing, relevant for elemental overlap analysis in multi-metallic samples.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114123"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using non-parametric statistical testing to quantify solute clustering in atom probe reconstructions
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-02-24 DOI: 10.1016/j.ultramic.2025.114120
William J. Davids, Mengwei He, Huma Bilal, Andrew J. Breen, Simon P. Ringer
Atom probe tomography (APT) is routinely used to investigate nano-scale solute architecture within multicomponent systems. However, there is no consensus on how to best quantify solute clustering within APT data. This contribution leverages recent developments in the field of non-parametric hypothesis testing of nearest-neighbour distributions to address this critical gap. We adapt a goodness-of-fit-type test statistic known as ‘the level of heterogeneity’ to quantitatively discern whether solute distributions exhibit clustering behaviour beyond what would be expected from a random distribution. Further, comparing APT datasets remains difficult due to the inability to directly compare their nearest-neighbour distributions. We present a method that leverages Monte-Carlo simulations, already used to calculate the non-parametric statistic, as a means of comparing APT data. The method is more powerful than comparing datasets through the Pearson coefficient, as is conventionally done.
{"title":"Using non-parametric statistical testing to quantify solute clustering in atom probe reconstructions","authors":"William J. Davids,&nbsp;Mengwei He,&nbsp;Huma Bilal,&nbsp;Andrew J. Breen,&nbsp;Simon P. Ringer","doi":"10.1016/j.ultramic.2025.114120","DOIUrl":"10.1016/j.ultramic.2025.114120","url":null,"abstract":"<div><div>Atom probe tomography (APT) is routinely used to investigate nano-scale solute architecture within multicomponent systems. However, there is no consensus on how to best quantify solute clustering within APT data. This contribution leverages recent developments in the field of non-parametric hypothesis testing of nearest-neighbour distributions to address this critical gap. We adapt a goodness-of-fit-type test statistic known as ‘the level of heterogeneity’ to quantitatively discern whether solute distributions exhibit clustering behaviour beyond what would be expected from a random distribution. Further, comparing APT datasets remains difficult due to the inability to directly compare their nearest-neighbour distributions. We present a method that leverages Monte-Carlo simulations, already used to calculate the non-parametric statistic, as a means of comparing APT data. The method is more powerful than comparing datasets through the Pearson coefficient, as is conventionally done.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114120"},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commonsense and common nonsense opinions: PROSPECTS for further reducing beam damage in electron microscopy of radiation-sensitive specimens
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-02-16 DOI: 10.1016/j.ultramic.2025.114118
Robert M. Glaeser
Biological molecules are easily damaged by high-energy electrons, thus limiting the exposures that can be used to image such specimens by electron microscopy. It is argued here that many-electron, volume-plasmon excitations, which promptly transition into multiple types of single-electron ionization and excitation events, seem to be the predominant cause of damage in such materials. Although reducing the rate at which primary radiolysis occurs would allow one to record images that were much less noisy, many novel proposals for achieving this are unlikely to be realized in the near future, while others are manifestly ill-founded. As a result, the most realistic option currently is to more effectively use the available “budget” of electron exposure, i.e. to further improve the “dose efficiency” by which images are recorded. While progress in that direction is currently under way for both “conventional” (i.e. fixed-beam) and scanning EM, the former is expected to set a high standard for the latter to surpass.
{"title":"Commonsense and common nonsense opinions: PROSPECTS for further reducing beam damage in electron microscopy of radiation-sensitive specimens","authors":"Robert M. Glaeser","doi":"10.1016/j.ultramic.2025.114118","DOIUrl":"10.1016/j.ultramic.2025.114118","url":null,"abstract":"<div><div>Biological molecules are easily damaged by high-energy electrons, thus limiting the exposures that can be used to image such specimens by electron microscopy. It is argued here that many-electron, volume-plasmon excitations, which promptly transition into multiple types of single-electron ionization and excitation events, seem to be the predominant cause of damage in such materials. Although reducing the rate at which primary radiolysis occurs would allow one to record images that were much less noisy, many novel proposals for achieving this are unlikely to be realized in the near future, while others are manifestly ill-founded. As a result, the most realistic option currently is to more effectively use the available “budget” of electron exposure, i.e. to further improve the “dose efficiency” by which images are recorded. While progress in that direction is currently under way for both “conventional” (i.e. fixed-beam) and scanning EM, the former is expected to set a high standard for the latter to surpass.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114118"},"PeriodicalIF":2.1,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile machine learning workflow for high-throughput analysis of supported metal catalyst particles
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-02-16 DOI: 10.1016/j.ultramic.2025.114116
Arda Genc , Justin Marlowe , Anika Jalil , Daniel Belzberg , Libor Kovarik , Phillip Christopher
Accurate and efficient characterization of nanoparticles (NPs), particularly regarding particle size distribution, is essential for advancing our understanding of their structure-property relationship and facilitating their design for various applications. In this study, we introduce a novel two-stage artificial intelligence (AI)-driven workflow for NP analysis that leverages prompt engineering techniques from state-of-the-art single-stage object detection and large-scale vision transformer (ViT) architectures. This methodology is applied to transmission electron microscopy (TEM) and scanning TEM (STEM) images of heterogeneous catalysts, enabling high-resolution, high-throughput analysis of particle size distributions for supported metal catalyst NPs. The model's performance in detecting and segmenting NPs is validated across diverse heterogeneous catalyst systems, including various metals (Ru, Cu, PtCo, and Pt), supports (silica (SiO2), γ-alumina (γ-Al2O3), and carbon black), and particle diameter size distributions with mean and standard deviations ranging from 1.6 ± 0.2 nm to 9.7 ± 4.6 nm. The proposed machine learning (ML) methodology achieved an average F1 overlap score of 0.91 ± 0.01 and demonstrated the ability to disentangle overlapping NPs anchored on catalytic support materials. The segmentation accuracy is further validated using the Hausdorff distance and robust Hausdorff distance metrics, with the 90th percent of the robust Hausdorff distance showing errors within 0.4 ± 0.1 nm to 1.4 ± 0.6 nm. Our AI-assisted NP analysis workflow demonstrates robust generalization across diverse datasets and can be readily applied to similar NP segmentation tasks without requiring costly model retraining.
{"title":"A versatile machine learning workflow for high-throughput analysis of supported metal catalyst particles","authors":"Arda Genc ,&nbsp;Justin Marlowe ,&nbsp;Anika Jalil ,&nbsp;Daniel Belzberg ,&nbsp;Libor Kovarik ,&nbsp;Phillip Christopher","doi":"10.1016/j.ultramic.2025.114116","DOIUrl":"10.1016/j.ultramic.2025.114116","url":null,"abstract":"<div><div>Accurate and efficient characterization of nanoparticles (NPs), particularly regarding particle size distribution, is essential for advancing our understanding of their structure-property relationship and facilitating their design for various applications. In this study, we introduce a novel two-stage artificial intelligence (AI)-driven workflow for NP analysis that leverages prompt engineering techniques from state-of-the-art single-stage object detection and large-scale vision transformer (ViT) architectures. This methodology is applied to transmission electron microscopy (TEM) and scanning TEM (STEM) images of heterogeneous catalysts, enabling high-resolution, high-throughput analysis of particle size distributions for supported metal catalyst NPs. The model's performance in detecting and segmenting NPs is validated across diverse heterogeneous catalyst systems, including various metals (Ru, Cu, PtCo, and Pt), supports (silica (SiO<sub>2</sub>), γ-alumina (γ-Al<sub>2</sub>O<sub>3</sub>), and carbon black), and particle diameter size distributions with mean and standard deviations ranging from 1.6 ± 0.2 nm to 9.7 ± 4.6 nm. The proposed machine learning (ML) methodology achieved an average F1 overlap score of 0.91 ± 0.01 and demonstrated the ability to disentangle overlapping NPs anchored on catalytic support materials. The segmentation accuracy is further validated using the Hausdorff distance and robust Hausdorff distance metrics, with the 90th percent of the robust Hausdorff distance showing errors within 0.4 ± 0.1 nm to 1.4 ± 0.6 nm. Our AI-assisted NP analysis workflow demonstrates robust generalization across diverse datasets and can be readily applied to similar NP segmentation tasks without requiring costly model retraining.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114116"},"PeriodicalIF":2.1,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to "The impact of electric field strength on the accuracy of boron dopant quantification in silicon using atom probe tomography".
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-02-09 DOI: 10.1016/j.ultramic.2025.114115
Bavley Guerguis, Ramya Cuduvally, Richard J H Morris, Gabriel Arcuri, Brian Langelier, Nabil Bassim
{"title":"Erratum to \"The impact of electric field strength on the accuracy of boron dopant quantification in silicon using atom probe tomography\".","authors":"Bavley Guerguis, Ramya Cuduvally, Richard J H Morris, Gabriel Arcuri, Brian Langelier, Nabil Bassim","doi":"10.1016/j.ultramic.2025.114115","DOIUrl":"https://doi.org/10.1016/j.ultramic.2025.114115","url":null,"abstract":"","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":" ","pages":"114115"},"PeriodicalIF":2.1,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of laser wavelength and pulse energy on the evaporation behavior of TiN coatings in atom probe tomography: A multi-instrument study 激光波长和脉冲能量对原子探针层析TiN涂层蒸发行为的影响:多仪器研究。
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-01-17 DOI: 10.1016/j.ultramic.2025.114105
Maximilian Schiester , Helene Waldl , Katherine P. Rice , Marcus Hans , Daniel Primetzhofer , Nina Schalk , Michael Tkadletz
The impact of the laser wavelength on accuracy in elemental composition analysis in atom probe tomography (APT) was investigated. Three different commercial atom probe systems — LEAP 3000X HR, LEAP 5000 XR, and LEAP 6000 XR — were systematically compared for a TiN model coating studying the effect of shorter laser wavelengths, especially in the deep ultraviolet (DUV) range, on the evaporation behavior. The findings demonstrate that the use of shorter wavelengths enhances the accuracy in elemental composition, while maintaining similar electric field strengths. Thus, thermal effects are reduced, which in turn improves mass resolving power. An important aspect of this research includes the estimation of energy density ratios of the different instruments. The reduction in wavelength is accompanied by increasing energy densities due to smaller laser spot sizes. Furthermore, advancements in the detector technology were studied. Finally, the detector dead-times were determined and dead-zones were evaluated to investigate the ion pile-up behavior in APT measurements of nitrides with the LEAP 6000 XR.
研究了激光波长对原子探针层析(APT)元素组成分析精度的影响。采用LEAP 3000X HR、LEAP 5000 XR和LEAP 6000 XR三种不同的商用原子探针系统对TiN模型涂层进行了系统比较,研究了较短激光波长,特别是深紫外(DUV)范围内激光波长对蒸发行为的影响。研究结果表明,使用较短的波长可以提高元素组成的准确性,同时保持相似的电场强度。因此,减少了热效应,从而提高了质量分辨能力。本研究的一个重要方面包括估算不同仪器的能量密度比。由于激光光斑尺寸较小,波长的减小伴随着能量密度的增加。此外,还研究了探测器技术的进展。最后,确定了探测器的死区时间,并评估了死区,以研究LEAP 6000 XR在氮化物APT测量中的离子堆积行为。
{"title":"Effects of laser wavelength and pulse energy on the evaporation behavior of TiN coatings in atom probe tomography: A multi-instrument study","authors":"Maximilian Schiester ,&nbsp;Helene Waldl ,&nbsp;Katherine P. Rice ,&nbsp;Marcus Hans ,&nbsp;Daniel Primetzhofer ,&nbsp;Nina Schalk ,&nbsp;Michael Tkadletz","doi":"10.1016/j.ultramic.2025.114105","DOIUrl":"10.1016/j.ultramic.2025.114105","url":null,"abstract":"<div><div>The impact of the laser wavelength on accuracy in elemental composition analysis in atom probe tomography (APT) was investigated. Three different commercial atom probe systems — LEAP 3000X HR, LEAP 5000 XR, and LEAP 6000 XR — were systematically compared for a TiN model coating studying the effect of shorter laser wavelengths, especially in the deep ultraviolet (DUV) range, on the evaporation behavior. The findings demonstrate that the use of shorter wavelengths enhances the accuracy in elemental composition, while maintaining similar electric field strengths. Thus, thermal effects are reduced, which in turn improves mass resolving power. An important aspect of this research includes the estimation of energy density ratios of the different instruments. The reduction in wavelength is accompanied by increasing energy densities due to smaller laser spot sizes. Furthermore, advancements in the detector technology were studied. Finally, the detector dead-times were determined and dead-zones were evaluated to investigate the ion pile-up behavior in APT measurements of nitrides with the LEAP 6000 XR.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114105"},"PeriodicalIF":2.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-01-17 DOI: 10.1016/j.ultramic.2025.114106
Jennifer L.W. Carter , Tugce Karakulak Uz , Buhari Ibrahim , Jeffrey S. Pigott , Jerard V. Gordon
The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.e., pixel-by-pixel identification of elements from the spectra, and a new principal component analysis approach to detect regions of similar spectra before identifying elemental contributions to each spectrum. It was determined that features over 200 nm were detectable with the TSEM-EDS standard spectra analysis technique but the PCA analysis approach was necessary for observing smaller features that contained trace elements. Monte Carlo simulations indicated that the spatial resolution expected from a 150 nm thick foil was consistent with those observed in experimental analysis. Simulations also confirm that thinner samples enable higher spatial resolution scans although smaller interaction volumes may require longer acquisition times.
{"title":"A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy","authors":"Jennifer L.W. Carter ,&nbsp;Tugce Karakulak Uz ,&nbsp;Buhari Ibrahim ,&nbsp;Jeffrey S. Pigott ,&nbsp;Jerard V. Gordon","doi":"10.1016/j.ultramic.2025.114106","DOIUrl":"10.1016/j.ultramic.2025.114106","url":null,"abstract":"<div><div>The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.e., pixel-by-pixel identification of elements from the spectra, and a new principal component analysis approach to detect regions of similar spectra before identifying elemental contributions to each spectrum. It was determined that features over 200 nm were detectable with the TSEM-EDS standard spectra analysis technique but the PCA analysis approach was necessary for observing smaller features that contained trace elements. Monte Carlo simulations indicated that the spatial resolution expected from a 150 nm thick foil was consistent with those observed in experimental analysis. Simulations also confirm that thinner samples enable higher spatial resolution scans although smaller interaction volumes may require longer acquisition times.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114106"},"PeriodicalIF":2.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Site-specific plan-view (S)TEM sample preparation from thin films using a dual-beam FIB-SEM 使用双光束FIB-SEM从薄膜中制备特定位置的平面视图(S)TEM样品。
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-01-13 DOI: 10.1016/j.ultramic.2025.114104
Supriya Ghosh, Fengdeng Liu, Sreejith Nair, Rishi Raj, Bharat Jalan, K. Andre Mkhoyan
To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed. It is based on using a dual-beam focused ion beam scanning electron microscope (FIB-SEM) system. To demonstrate the method, the samples were prepared from thin films of perovskite oxide BaSnO3 grown on a SrTiO3 substrate and metal oxide IrO2 on a TiO2 substrate, ranging from 20–80 nm in thicknesses using molecular beam epitaxy. While the method is optimized for the thin films, it can be extended to other site-specific plan-view samples and devices build on wafers. Aberration-corrected STEM was used to evaluate the quality of the samples and their applicability for atomic-resolution imaging and analysis.
为了充分评估原子结构,并使用透射电子显微镜材料的相关性质,从三个非共线取向的样品检查是必要的。由于平面视图样品制备的限制,这对于建立在衬底上的薄膜和纳米级器件尤其具有挑战性。在这项工作中,提出并讨论了一种从衬底上生长的薄膜制备高质量,特定位置,平面视图TEM样品的新方法。它是基于使用双光束聚焦离子束扫描电子显微镜(FIB-SEM)系统。为了证明该方法的可行性,研究人员利用分子束外延技术,在SrTiO3衬底上生长钙钛矿氧化物BaSnO3薄膜,在TiO2衬底上生长金属氧化物IrO2薄膜,制备了厚度为20-80 nm的样品。虽然该方法针对薄膜进行了优化,但它可以扩展到其他特定地点的平面视图样品和晶圆上的器件。采用像差校正后的STEM来评价样品的质量及其在原子分辨率成像和分析中的适用性。
{"title":"Site-specific plan-view (S)TEM sample preparation from thin films using a dual-beam FIB-SEM","authors":"Supriya Ghosh,&nbsp;Fengdeng Liu,&nbsp;Sreejith Nair,&nbsp;Rishi Raj,&nbsp;Bharat Jalan,&nbsp;K. Andre Mkhoyan","doi":"10.1016/j.ultramic.2025.114104","DOIUrl":"10.1016/j.ultramic.2025.114104","url":null,"abstract":"<div><div>To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed. It is based on using a dual-beam focused ion beam scanning electron microscope (FIB-SEM) system. To demonstrate the method, the samples were prepared from thin films of perovskite oxide BaSnO<sub>3</sub> grown on a SrTiO<sub>3</sub> substrate and metal oxide IrO<sub>2</sub> on a TiO<sub>2</sub> substrate, ranging from 20–80 nm in thicknesses using molecular beam epitaxy. While the method is optimized for the thin films, it can be extended to other site-specific plan-view samples and devices build on wafers. Aberration-corrected STEM was used to evaluate the quality of the samples and their applicability for atomic-resolution imaging and analysis.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114104"},"PeriodicalIF":2.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semicircular-aperture illumination scanning transmission electron microscopy 半圆孔径照明扫描透射电子显微镜。
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-01-13 DOI: 10.1016/j.ultramic.2025.114103
Akira Yasuhara , Fumio Hosokawa , Sadayuki Asaoka , Teppei Akiyama , Tomokazu Iyoda , Chikako Nakayama , Takumi Sannomiya
Scanning transmission electron microscopy (STEM) provides high-resolution visualization of atomic structures as well as various functional imaging modes utilizing phase contrasts. In this study we introduce a semicircular aperture in STEM bright field imaging, which gives a phase contrast transfer function that becomes complex and includes both lower and higher spatial frequency contrast transfer. This approach offers significant advantages over conventional phase plate methods, having no charge accumulation, degradation, or unwanted background noise, which are all problematic in the phase plate material. Also compared to the differential phase contrast or ptychography equipment, this semicircular aperture is far less costly. We apply this approach to visualization of polymer, biological and magnetic samples.
扫描透射电子显微镜(STEM)提供高分辨率的原子结构可视化以及利用相对比的各种功能成像模式。在这项研究中,我们在STEM亮场成像中引入了一个半圆孔径,它给出了一个复杂的相对比度传递函数,包括低频率和高频率的空间对比度传递。与传统的相板方法相比,这种方法具有显著的优势,没有电荷积累、退化或不必要的背景噪声,这些都是相板材料中的问题。此外,与差相对比或平面摄影设备相比,这种半圆孔径的成本要低得多。我们将这种方法应用于聚合物、生物和磁性样品的可视化。
{"title":"Semicircular-aperture illumination scanning transmission electron microscopy","authors":"Akira Yasuhara ,&nbsp;Fumio Hosokawa ,&nbsp;Sadayuki Asaoka ,&nbsp;Teppei Akiyama ,&nbsp;Tomokazu Iyoda ,&nbsp;Chikako Nakayama ,&nbsp;Takumi Sannomiya","doi":"10.1016/j.ultramic.2025.114103","DOIUrl":"10.1016/j.ultramic.2025.114103","url":null,"abstract":"<div><div>Scanning transmission electron microscopy (STEM) provides high-resolution visualization of atomic structures as well as various functional imaging modes utilizing phase contrasts. In this study we introduce a semicircular aperture in STEM bright field imaging, which gives a phase contrast transfer function that becomes complex and includes both lower and higher spatial frequency contrast transfer. This approach offers significant advantages over conventional phase plate methods, having no charge accumulation, degradation, or unwanted background noise, which are all problematic in the phase plate material. Also compared to the differential phase contrast or ptychography equipment, this semicircular aperture is far less costly. We apply this approach to visualization of polymer, biological and magnetic samples.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114103"},"PeriodicalIF":2.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An applied noise model for low-loss EELS maps 低损耗EELS地图的应用噪声模型。
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2025-01-13 DOI: 10.1016/j.ultramic.2024.114101
Christian Zietlow, Jörg K.N. Lindner
Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise. A general understanding of the noise is essential for evaluating the quality of measurements or for designing more effective post-processing techniques such as deconvolution, which especially in the context of EELS is a common practice to enhance signals. Therefore, we offer theoretical insight into the noise smoothing by convolution and characterize the resulting noise correlations by Pearson coefficients. Additional effects play a role in EELS mapping, where multiple spectra are acquired sequentially at various specimen positions. These three-dimensional datasets are affected by energy drifts of the electron beam, causing spectra to shift relative to each other, and by beam current deviations, which alter their relative proportion. We investigate several energy alignment techniques to correct energy drifts on a sub-channel level and describe the intensity normalization necessary to correct for beam current deviations. Both procedures affect noises and uncertainties of the measurement to various degrees. In this paper, we mathematically derive an applied noise model for EELS measurements, which is straightforward to use. Therefore, we provide the necessary methods to determine the most important noise parameters of the EELS detector enabling users to adapt the model. In summary, we aim to provide a comprehensive understanding of the noises faced in EELS and offer the necessary tools to apply this knowledge in practice.
在扫描透射电子显微镜(STEM)中进行的电子能量损失光谱(EELS)与其他测量一样容易受到噪声的影响。EELS测量也受到信号模糊的影响,这与电子束的能量分布和检波器点扩展函数(PSF)有关。此外,探测器引起的信号模糊引入了相关效应,从而平滑了噪声。对噪声的一般理解对于评估测量质量或设计更有效的后处理技术(如反褶积)至关重要,特别是在EELS的背景下,这是增强信号的常用做法。因此,我们提供了对卷积噪声平滑的理论见解,并通过皮尔逊系数表征了产生的噪声相关性。附加效应在EELS制图中发挥作用,在不同的样品位置依次获得多个光谱。这些三维数据集受到电子束能量漂移和电子束电流偏差的影响,电子束的能量漂移会导致光谱相对偏移,电子束电流偏差会改变它们的相对比例。我们研究了几种能量对准技术来纠正子通道水平上的能量漂移,并描述了纠正光束电流偏差所需的强度归一化。这两种方法对测量噪声和不确定度都有不同程度的影响。在本文中,我们从数学上推导了一个用于EELS测量的应用噪声模型,该模型易于使用。因此,我们提供了必要的方法来确定EELS检测器最重要的噪声参数,使用户能够适应模型。总之,我们的目标是提供对EELS中所面临的噪声的全面理解,并提供在实践中应用这些知识的必要工具。
{"title":"An applied noise model for low-loss EELS maps","authors":"Christian Zietlow,&nbsp;Jörg K.N. Lindner","doi":"10.1016/j.ultramic.2024.114101","DOIUrl":"10.1016/j.ultramic.2024.114101","url":null,"abstract":"<div><div>Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise. A general understanding of the noise is essential for evaluating the quality of measurements or for designing more effective post-processing techniques such as deconvolution, which especially in the context of EELS is a common practice to enhance signals. Therefore, we offer theoretical insight into the noise smoothing by convolution and characterize the resulting noise correlations by Pearson coefficients. Additional effects play a role in EELS mapping, where multiple spectra are acquired sequentially at various specimen positions. These three-dimensional datasets are affected by energy drifts of the electron beam, causing spectra to shift relative to each other, and by beam current deviations, which alter their relative proportion. We investigate several energy alignment techniques to correct energy drifts on a sub-channel level and describe the intensity normalization necessary to correct for beam current deviations. Both procedures affect noises and uncertainties of the measurement to various degrees. In this paper, we mathematically derive an applied noise model for EELS measurements, which is straightforward to use. Therefore, we provide the necessary methods to determine the most important noise parameters of the EELS detector enabling users to adapt the model. In summary, we aim to provide a comprehensive understanding of the noises faced in EELS and offer the necessary tools to apply this knowledge in practice.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114101"},"PeriodicalIF":2.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultramicroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1