The Heat shock factor 20–HSF4–Cellulose synthase A2 module regulates heat stress tolerance in maize

Ze Li, Zerui Li, Yulong Ji, Chunyu Wang, Shufang Wang, Yiting Shi, Jie Le, Mei Zhang
{"title":"The Heat shock factor 20–HSF4–Cellulose synthase A2 module regulates heat stress tolerance in maize","authors":"Ze Li, Zerui Li, Yulong Ji, Chunyu Wang, Shufang Wang, Yiting Shi, Jie Le, Mei Zhang","doi":"10.1093/plcell/koae106","DOIUrl":null,"url":null,"abstract":"Temperature shapes the geographical distribution and behavior of plants. Understanding the regulatory mechanisms underlying the plant heat response is important for developing climate-resilient crops, including maize (Zea mays). To identify transcription factors that may contribute to the maize heat response, we generated a dataset of short- and long-term transcriptome changes following a heat treatment time course in the inbred line B73. Co-expression network analysis highlighted several transcription factors, including the class B2a heat shock factor (HSF) ZmHSF20. Zmhsf20 mutant seedlings exhibited enhanced tolerance to heat stress. Furthermore, DNA affinity purification sequencing and Cleavage Under Targets and Tagmentation (CUT&Tag) assays demonstrated that ZmHSF20 binds to the promoters of Cellulose synthase A2 (ZmCesA2) and three class A Hsf genes, including ZmHsf4, repressing their transcription. We showed that ZmCesA2 and ZmHSF4 promote the heat response, with ZmHSF4 directly activating ZmCesA2 transcription. In agreement with the transcriptome analysis, ZmHSF20 inhibited cellulose accumulation and repressed the expression of cell wall–related genes. Importantly, the Zmhsf20 Zmhsf4 double mutant exhibited decreased thermotolerance, placing ZmHsf4 downstream of ZmHsf20. We proposed an expanded model of the heat stress response in maize, whereby ZmHSF20 lowers seedling heat tolerance by repressing ZmHsf4 and ZmCesA2, thus balancing seedling growth and defense.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature shapes the geographical distribution and behavior of plants. Understanding the regulatory mechanisms underlying the plant heat response is important for developing climate-resilient crops, including maize (Zea mays). To identify transcription factors that may contribute to the maize heat response, we generated a dataset of short- and long-term transcriptome changes following a heat treatment time course in the inbred line B73. Co-expression network analysis highlighted several transcription factors, including the class B2a heat shock factor (HSF) ZmHSF20. Zmhsf20 mutant seedlings exhibited enhanced tolerance to heat stress. Furthermore, DNA affinity purification sequencing and Cleavage Under Targets and Tagmentation (CUT&Tag) assays demonstrated that ZmHSF20 binds to the promoters of Cellulose synthase A2 (ZmCesA2) and three class A Hsf genes, including ZmHsf4, repressing their transcription. We showed that ZmCesA2 and ZmHSF4 promote the heat response, with ZmHSF4 directly activating ZmCesA2 transcription. In agreement with the transcriptome analysis, ZmHSF20 inhibited cellulose accumulation and repressed the expression of cell wall–related genes. Importantly, the Zmhsf20 Zmhsf4 double mutant exhibited decreased thermotolerance, placing ZmHsf4 downstream of ZmHsf20. We proposed an expanded model of the heat stress response in maize, whereby ZmHSF20 lowers seedling heat tolerance by repressing ZmHsf4 and ZmCesA2, thus balancing seedling growth and defense.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热休克因子 20-HSF4-Cellulose synthase A2 模块调控玉米的热胁迫耐受性
温度影响着植物的地理分布和行为。了解植物热反应的调控机制对于开发包括玉米(Zea mays)在内的气候适应性作物非常重要。为了确定可能有助于玉米热响应的转录因子,我们在近交系 B73 中生成了热处理时间过程中短期和长期转录组变化的数据集。共表达网络分析突出了几个转录因子,包括 B2a 类热休克因子(HSF)ZmHSF20。Zmhsf20 突变体幼苗对热胁迫的耐受性增强。此外,DNA亲和纯化测序和靶标裂解及标记(CUT&Tag)检测表明,ZmHSF20与纤维素合成酶A2(ZmCesA2)和包括ZmHsf4在内的三个A类热休克因子基因的启动子结合,抑制它们的转录。我们发现,ZmCesA2 和 ZmHSF4 促进了热反应,其中 ZmHSF4 直接激活了 ZmCesA2 的转录。与转录组分析一致,ZmHSF20抑制了纤维素的积累,并抑制了细胞壁相关基因的表达。重要的是,Zmhsf20 Zmhsf4双突变体的耐热性降低,这表明ZmHsf4位于ZmHsf20的下游。我们提出了一个扩展的玉米热胁迫响应模型,即 ZmHSF20 通过抑制 ZmHsf4 和 ZmCesA2 来降低幼苗的耐热性,从而平衡幼苗的生长和防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The FERONIA–RESPONSIVE TO DESSICATION 26 module regulates vascular immunity to Ralstonia solanacearum Phosphoketolase and KDPG aldolase metabolisms modulate photosynthetic carbon yield in cyanobacteria The kinase ATR controls meiotic crossover distribution at the genome scale in Arabidopsis Ribosome binding of phasiRNA precursors accelerates the 24-nt phasiRNA burst in meiotic maize anthers EMBRYONIC FLOWER 1 regulates male reproduction by repressing the jasmonate pathway downstream transcription factor MYB26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1