Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases

IF 28.7 1区 医学 Q1 NEUROSCIENCES Nature Reviews Neuroscience Pub Date : 2024-04-04 DOI:10.1038/s41583-024-00806-0
Martin Kampmann
{"title":"Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases","authors":"Martin Kampmann","doi":"10.1038/s41583-024-00806-0","DOIUrl":null,"url":null,"abstract":"The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations — including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease — are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations. Selective vulnerability of particular neuronal cell types is a characteristic of neurodegenerative diseases. Martin Kampmann explores our current understanding of the cellular and molecular mechanisms that lead to selective vulnerability in different diseases.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 5","pages":"351-371"},"PeriodicalIF":28.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-024-00806-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations — including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease — are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations. Selective vulnerability of particular neuronal cell types is a characteristic of neurodegenerative diseases. Martin Kampmann explores our current understanding of the cellular and molecular mechanisms that lead to selective vulnerability in different diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经退行性疾病选择性易损性的分子和细胞机制
特定神经元亚型的选择性易损性是神经退行性疾病的一个特征。在这篇综述中,我总结了我们目前对不同神经退行性疾病中选择性脆弱的脑区和细胞类型的理解,并描述了所提出的细胞自主和非细胞自主机制。我重点介绍了最近的方法创新--包括单细胞转录组学、基于CRISPR的筛选和基于人类细胞的疾病模型--如何使我们对选择性易损性的理解取得新的突破。对决定选择性易损性和恢复力的分子机制的了解将揭示驱动神经退行性变的关键过程,并为保护易损细胞群指出潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.60%
发文量
104
期刊介绍: Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.
期刊最新文献
Opening the gate to regeneration Fly connectome over the wire Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers Social and emotional learning in the cerebellum Synaptic sleep pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1