Characterization of structural and mechanical properties of HfNbTaTiZr refractory high entropy alloy after gas nitriding

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2024-04-06 DOI:10.1016/j.intermet.2024.108279
Yunus Alphan , Mertcan Kaba , Amir Motallebzadeh , Huseyin Cimenoglu
{"title":"Characterization of structural and mechanical properties of HfNbTaTiZr refractory high entropy alloy after gas nitriding","authors":"Yunus Alphan ,&nbsp;Mertcan Kaba ,&nbsp;Amir Motallebzadeh ,&nbsp;Huseyin Cimenoglu","doi":"10.1016/j.intermet.2024.108279","DOIUrl":null,"url":null,"abstract":"<div><p>This study was initiated to improve surface hardness and wear resistance of a HfNbTaTiZr refractory high entropy alloy (RHEA) by gas nitriding at a medium temperature (600 °C) for 3 h. Structural characterizations conducted by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) equipped scanning electron microscope (SEM) revealed that nitriding led to formation of a 1.5 μm thick surface layer containing precipitates of oxides and nitrides of the alloying elements. Detection of oxides within the surface layer was attributed to the presence residual oxygen in the nitriding atmosphere. Nevertheless, the employed gas nitriding provided remarkably higher scratch resistance compared to the untreated state, as the results of increment in the surface hardness and development of larger compressive residual stress.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524000980","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study was initiated to improve surface hardness and wear resistance of a HfNbTaTiZr refractory high entropy alloy (RHEA) by gas nitriding at a medium temperature (600 °C) for 3 h. Structural characterizations conducted by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) equipped scanning electron microscope (SEM) revealed that nitriding led to formation of a 1.5 μm thick surface layer containing precipitates of oxides and nitrides of the alloying elements. Detection of oxides within the surface layer was attributed to the presence residual oxygen in the nitriding atmosphere. Nevertheless, the employed gas nitriding provided remarkably higher scratch resistance compared to the untreated state, as the results of increment in the surface hardness and development of larger compressive residual stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体氮化后 HfNbTaTiZr 高熵难熔合金的结构和力学性能表征
本研究旨在通过在中温(600 °C)下气体氮化 3 小时,提高 HfNbTaTiZr 难熔高熵合金(RHEA)的表面硬度和耐磨性。利用配备扫描电子显微镜(SEM)的 X 射线衍射仪(XRD)、X 射线光电子能谱(XPS)和能量色散光谱(EDS)进行的结构表征显示,氮化可形成 1.5 μm 厚的表层,其中含有合金元素的氧化物和氮化物沉淀。表面层中发现氧化物的原因是氮化气氛中存在残余氧气。尽管如此,与未处理状态相比,采用气体氮化的耐刮擦性显著提高,这是表面硬度增加和产生较大压缩残余应力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Formation of lamellar eutectic structure and improved mechanical properties of directional solidified Al0.9CoCrNi2.1 high-entropy alloy Improvement of heat aging resistance and tensile strength of SAC305/Cu solder joints by multi-element microalloying Multi-scale investigation on grain size effect of a powder metallurgy Ni-based superalloy based on simulation and experimental characterization Enhanced properties of Al0.3NbTiZrMox refractory high-entropy alloys achieved with a change in Mo content The staggered dual-phase structure in AlCoCrFeNi2.1 eutectic high-entropy alloys for superior irradiation and corrosion resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1