{"title":"CRAS-FL: Clustered resource-aware scheme for federated learning in vehicular networks","authors":"Sawsan AbdulRahman , Ouns Bouachir , Safa Otoum , Azzam Mourad","doi":"10.1016/j.vehcom.2024.100769","DOIUrl":null,"url":null,"abstract":"<div><p>As a promising distributed learning paradigm, Federated Learning (FL) is expected to meet the ever-increasing needs of Machine Learning (ML) based applications in Intelligent Transportation Systems (ITS). It is a powerful tool that processes the large amount of on-board data while preserving its privacy by locally learning the models. However, training and transmitting the model parameters in vehicular networks consume significant resources and time, which is not suitable for applications with strict real-time requirements. Moreover, the quality of the data, the mobility of the participating vehicles, as well as their heterogeneous capabilities, can impact the performance of FL process, bringing to the forefront the optimization of the data selection and the clients resources. In this paper, we propose CRAS-FL, a Clustered Resource-Aware Scheme for FL in Vehicular Networks. The proposed approach bypasses (1) communication bottlenecks by forming groups of vehicles, where the Cluster Head (CH) is responsible of handling the communication and (2) computation bottlenecks by introducing an offloading strategy, where the availability of the extra resources on some vehicles is leveraged. Particularly, CRAS-FL implements a CH election Algorithm, where the bandwidth, stability, computational resources, and vehicles topology are considered in order to ensure reliable communication and cluster stability. Moreover, the offloading strategy studies the quality of the models and the resources of the clients, and accordingly allows computational offloading among the group peers. The conducted experiments show how the proposed scheme outperforms the current approaches in the literature by (1) reducing the communication overhead, (2) targeting more training data, and (3) reducing the clusters response time.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"47 ","pages":"Article 100769"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000445","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As a promising distributed learning paradigm, Federated Learning (FL) is expected to meet the ever-increasing needs of Machine Learning (ML) based applications in Intelligent Transportation Systems (ITS). It is a powerful tool that processes the large amount of on-board data while preserving its privacy by locally learning the models. However, training and transmitting the model parameters in vehicular networks consume significant resources and time, which is not suitable for applications with strict real-time requirements. Moreover, the quality of the data, the mobility of the participating vehicles, as well as their heterogeneous capabilities, can impact the performance of FL process, bringing to the forefront the optimization of the data selection and the clients resources. In this paper, we propose CRAS-FL, a Clustered Resource-Aware Scheme for FL in Vehicular Networks. The proposed approach bypasses (1) communication bottlenecks by forming groups of vehicles, where the Cluster Head (CH) is responsible of handling the communication and (2) computation bottlenecks by introducing an offloading strategy, where the availability of the extra resources on some vehicles is leveraged. Particularly, CRAS-FL implements a CH election Algorithm, where the bandwidth, stability, computational resources, and vehicles topology are considered in order to ensure reliable communication and cluster stability. Moreover, the offloading strategy studies the quality of the models and the resources of the clients, and accordingly allows computational offloading among the group peers. The conducted experiments show how the proposed scheme outperforms the current approaches in the literature by (1) reducing the communication overhead, (2) targeting more training data, and (3) reducing the clusters response time.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.