{"title":"Robustness Assessment of Wind Power Generation Considering Rigorous Security Constraints for Power System: A Hybrid RLO-IGDT Approach","authors":"Lianyong Zuo;Shengshi Wang;Yong Sun;Shichang Cui;Jiakun Fang;Xiaomeng Ai;Baoju Li;Chengliang Hao;Jinyu Wen","doi":"10.17775/CSEEJPES.2023.05980","DOIUrl":null,"url":null,"abstract":"Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, information gap decision theory (IGDT) is adapted to handle uncertainty of wind power generation. Based on conventional IGDT method, linear regulation strategy (LRS) and robust linear optimization (RLO) method are integrated to reformulate the model for rigorously considering security constraints. Then a robustness assessment method based on hybrid RLO-IGDT approach is proposed for analyzing robustness and economic performance of PS. Moreover, a risk-averse linearization method is adapted to convert the proposed assessment model into a mixed integer linear programming (MILP) problem for convenient optimization without robustness loss. Finally, results of case studies validate superiority of proposed method in guaranteeing operation security rigorously and effectiveness in assessment of RSR for PS without overestimation.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"518-529"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375963","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375963/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Fossil fuel depletion and environmental pollution problems promote development of renewable energy (RE) globally. With increasing penetration of RE, operation security and economy of power systems (PS) are greatly impacted by fluctuation and intermittence of renewable power. In this paper, information gap decision theory (IGDT) is adapted to handle uncertainty of wind power generation. Based on conventional IGDT method, linear regulation strategy (LRS) and robust linear optimization (RLO) method are integrated to reformulate the model for rigorously considering security constraints. Then a robustness assessment method based on hybrid RLO-IGDT approach is proposed for analyzing robustness and economic performance of PS. Moreover, a risk-averse linearization method is adapted to convert the proposed assessment model into a mixed integer linear programming (MILP) problem for convenient optimization without robustness loss. Finally, results of case studies validate superiority of proposed method in guaranteeing operation security rigorously and effectiveness in assessment of RSR for PS without overestimation.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.