{"title":"Reinforcement Learning-Empowered Graph Convolutional Network Framework for Data Integrity Attack Detection in Cyber-Physical Systems","authors":"Edeh Vincent;Mehdi Korki;Mehdi Seyedmahmoudian;Alex Stojcevski;Saad Mekhilef","doi":"10.17775/CSEEJPES.2023.01250","DOIUrl":null,"url":null,"abstract":"The massive integration of communication and information technology with the large-scale power grid has enhanced the efficiency, safety, and economical operation of cyber-physical systems. However, the open and diversified communication environment of the smart grid is exposed to cyber-attacks. Data integrity attacks that can bypass conventional security techniques have been considered critical threats to the operation of the grid. Current detection techniques cannot learn the dynamic and heterogeneous characteristics of the smart grid and are unable to deal with non-euclidean data types. To address the issue, we propose a novel Deep-Q-Network scheme empowered with a graph convolutional network (GCN) framework to detect data integrity attacks in cyber-physical systems. The simulation results show that the proposed framework is scalable and achieves higher detection accuracy, unlike other benchmark techniques.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"797-806"},"PeriodicalIF":6.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436596","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10436596/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The massive integration of communication and information technology with the large-scale power grid has enhanced the efficiency, safety, and economical operation of cyber-physical systems. However, the open and diversified communication environment of the smart grid is exposed to cyber-attacks. Data integrity attacks that can bypass conventional security techniques have been considered critical threats to the operation of the grid. Current detection techniques cannot learn the dynamic and heterogeneous characteristics of the smart grid and are unable to deal with non-euclidean data types. To address the issue, we propose a novel Deep-Q-Network scheme empowered with a graph convolutional network (GCN) framework to detect data integrity attacks in cyber-physical systems. The simulation results show that the proposed framework is scalable and achieves higher detection accuracy, unlike other benchmark techniques.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.