Robust low tubal rank tensor recovery using discrete empirical interpolation method with optimized slice/feature selection

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-04-06 DOI:10.1007/s10444-024-10117-8
Salman Ahmadi-Asl, Anh-Huy Phan, Cesar F. Caiafa, Andrzej Cichocki
{"title":"Robust low tubal rank tensor recovery using discrete empirical interpolation method with optimized slice/feature selection","authors":"Salman Ahmadi-Asl,&nbsp;Anh-Huy Phan,&nbsp;Cesar F. Caiafa,&nbsp;Andrzej Cichocki","doi":"10.1007/s10444-024-10117-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend the Discrete Empirical Interpolation Method (DEIM) to the third-order tensor case based on the t-product and use it to select important/significant lateral and horizontal slices/features. The proposed Tubal DEIM (TDEIM) is investigated both theoretically and numerically. In particular, the details of the error bounds of the proposed TDEIM method are derived. The experimental results show that the TDEIM can provide more accurate approximations than the existing methods. An application of the proposed method to the supervised classification task is also presented.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10117-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the Discrete Empirical Interpolation Method (DEIM) to the third-order tensor case based on the t-product and use it to select important/significant lateral and horizontal slices/features. The proposed Tubal DEIM (TDEIM) is investigated both theoretically and numerically. In particular, the details of the error bounds of the proposed TDEIM method are derived. The experimental results show that the TDEIM can provide more accurate approximations than the existing methods. An application of the proposed method to the supervised classification task is also presented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用优化切片/特征选择的离散经验插值法进行稳健的低管阶张量恢复
在本文中,我们将离散经验插值法(DEIM)扩展到基于 t 积的三阶张量情况,并用它来选择重要/显著的横向和水平切片/特征。对所提出的 Tubal DEIM(TDEIM)进行了理论和数值研究。特别是,得出了拟议的 TDEIM 方法的误差边界细节。实验结果表明,与现有方法相比,TDEIM 可以提供更精确的近似值。此外,还介绍了所提方法在监督分类任务中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies Higher-order iterative decoupling for poroelasticity Adaptive quarklet tree approximation Efficient computation of the sinc matrix function for the integration of second-order differential equations Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1