Adaptive quarklet tree approximation

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-10-31 DOI:10.1007/s10444-024-10205-9
Stephan Dahlke, Marc Hovemann, Thorsten Raasch, Dorian Vogel
{"title":"Adaptive quarklet tree approximation","authors":"Stephan Dahlke,&nbsp;Marc Hovemann,&nbsp;Thorsten Raasch,&nbsp;Dorian Vogel","doi":"10.1007/s10444-024-10205-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with near-optimal approximation of a given univariate function with elements of a polynomially enriched wavelet frame, a so-called quarklet frame. Inspired by <i>hp</i>-approximation techniques of Binev, we use the underlying tree structure of the frame elements to derive an adaptive algorithm that, under standard assumptions concerning the local errors, can be used to create approximations with an error close to the best tree approximation error for a given cardinality. We support our findings by numerical experiments demonstrating that this approach can be used to achieve inverse-exponential convergence rates.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10205-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10205-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with near-optimal approximation of a given univariate function with elements of a polynomially enriched wavelet frame, a so-called quarklet frame. Inspired by hp-approximation techniques of Binev, we use the underlying tree structure of the frame elements to derive an adaptive algorithm that, under standard assumptions concerning the local errors, can be used to create approximations with an error close to the best tree approximation error for a given cardinality. We support our findings by numerical experiments demonstrating that this approach can be used to achieve inverse-exponential convergence rates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应夸克树近似法
本文涉及用多项式丰富小波框架(即所谓的夸克框架)的元素对给定的单变量函数进行近优逼近。受 Binev 的 hp 近似技术启发,我们利用框架元素的底层树形结构推导出一种自适应算法,在有关局部误差的标准假设下,该算法可用于创建误差接近给定心率的最佳树形近似误差的近似值。我们通过数值实验证明,这种方法可以达到反指数收敛率,从而支持我们的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies Higher-order iterative decoupling for poroelasticity Adaptive quarklet tree approximation Efficient computation of the sinc matrix function for the integration of second-order differential equations Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1