{"title":"Statistical evaluation of the effect of size and strain rate on particle strength of rockfill materials","authors":"Shihao Yan, Shichun Chi, Yu Guo, Jinwei Wang, Xinjie Zhou","doi":"10.1007/s10035-024-01417-3","DOIUrl":null,"url":null,"abstract":"<div><p>The deformation of rockfill materials is mostly caused by particle breakage and subsequent skeleton adjustment. To investigate the effect of size and strain rate on particle strength under seismic load, a series of single particle crushing tests with different sizes and loading rates were conducted. The results show that the particle strength increases with the loading rate, while the size effect on particle strength gradually weakens. Furthermore, within the framework of the weakest chain theory, the failure probability per unit volume and the spatial location distribution of microcracks are discussed, and a statistical model for quasi-static particle strength is established. The spatial location of microcracks follows a power law distribution, and there is a specific power exponent at different strain rates, so that the compound parameters of the particle volume and failure probability are gathered on a master curve determined by the weakest chain statistics. The strain rate effect reduces the failure probability per unit volume and makes the spatial location distribution of microcracks sparser.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01417-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The deformation of rockfill materials is mostly caused by particle breakage and subsequent skeleton adjustment. To investigate the effect of size and strain rate on particle strength under seismic load, a series of single particle crushing tests with different sizes and loading rates were conducted. The results show that the particle strength increases with the loading rate, while the size effect on particle strength gradually weakens. Furthermore, within the framework of the weakest chain theory, the failure probability per unit volume and the spatial location distribution of microcracks are discussed, and a statistical model for quasi-static particle strength is established. The spatial location of microcracks follows a power law distribution, and there is a specific power exponent at different strain rates, so that the compound parameters of the particle volume and failure probability are gathered on a master curve determined by the weakest chain statistics. The strain rate effect reduces the failure probability per unit volume and makes the spatial location distribution of microcracks sparser.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.