José Geiser Villavicencio-Pulido, I. Barradas, C. Nila-Luévano
{"title":"Additive multiple contacts and saturation phenomena in epidemiological models are not detected by $R_0$","authors":"José Geiser Villavicencio-Pulido, I. Barradas, C. Nila-Luévano","doi":"10.1051/mmnp/2024006","DOIUrl":null,"url":null,"abstract":"Many infections are transmitted by direct contacts. Usually one single direct contact is needed to transmit the required minimum infectious load. Most models describe contagions by single contacts using a term of the type mass action law. However, modelling infections that are transmitted after the susceptible individual had contact with several sources of infection requires more than mass action law terms. We call additive multiple contacts those that do not produce infection by themselves, but can produce infection if they happen simultaneously. We are interested in understanding the role played by R0 missing the mark in infections in which the minimum infectious load is reached not only by single contacts but also by additive multiple contacts. We propose different mathematical models describing not only infections by one single contact but also by additive multiple contacts. We show all models have the same value of R0, but correspond to different epidemiological mechanisms. Two models show contagions by additive multiple contacts and a third one shows reduction of infections by some saturation process which is not captured by R0. This shows that trying to control the epidemics by controlling R0 could be unsufficient or in some cases waste resources.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2024006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many infections are transmitted by direct contacts. Usually one single direct contact is needed to transmit the required minimum infectious load. Most models describe contagions by single contacts using a term of the type mass action law. However, modelling infections that are transmitted after the susceptible individual had contact with several sources of infection requires more than mass action law terms. We call additive multiple contacts those that do not produce infection by themselves, but can produce infection if they happen simultaneously. We are interested in understanding the role played by R0 missing the mark in infections in which the minimum infectious load is reached not only by single contacts but also by additive multiple contacts. We propose different mathematical models describing not only infections by one single contact but also by additive multiple contacts. We show all models have the same value of R0, but correspond to different epidemiological mechanisms. Two models show contagions by additive multiple contacts and a third one shows reduction of infections by some saturation process which is not captured by R0. This shows that trying to control the epidemics by controlling R0 could be unsufficient or in some cases waste resources.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.