POPRAWA ZDROWIA UPRAW DZIĘKI CYFROWEMU BLIŹNIAKOWI DO MONITOROWANIA CHORÓB I RÓWNOWAGI SKŁADNIKÓW ODŻYWCZYCH

Sobhana Mummaneni, Tribhuvana Sree Sappa, Venkata Gayathri Devi Katakam
{"title":"POPRAWA ZDROWIA UPRAW DZIĘKI CYFROWEMU BLIŹNIAKOWI DO MONITOROWANIA CHORÓB I RÓWNOWAGI SKŁADNIKÓW ODŻYWCZYCH","authors":"Sobhana Mummaneni, Tribhuvana Sree Sappa, Venkata Gayathri Devi Katakam","doi":"10.35784/iapgos.5626","DOIUrl":null,"url":null,"abstract":"Digital Twins is a digital replica of a physical object to observe its real-time performance, gather data, and recommend corrective actions if required to enhance its performance. This fascinating technological idea is now reaching the agriculture fields to transform farming, by creating digital twins of entire farms. This initiative presents an innovative strategy to enhance crop health and yield by creating a digital twin for paddy fields. The aim is to enable early detection of nutrient deficiencies and leaf blast disease, leading to a transformation in agriculture. Creating virtual replicas of plants and fields, the digital twin harnesses real-time data and advanced analytics to transform the way agricultural systems are managed. By integrating remote sensing, data analytics, and various Internet of Things devices like pH, nitrous, potassium, and phosphorus sensors, coupled with a gateway system, the digital twin provides real-time monitoring and analysis of crop health and nutrient levels. Employing advanced machine learning algorithms, notably Convolutional Neural Networks ensures precise and early detection of nutrient deficiencies and crop diseases. This ground-breaking technology provides timely alerts and actionable insights to farmers, enabling proactive decision-making for optimal crop management. This farmland digital twin represents a transformative approach towards agricultural sustainability and enhancing productivity.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"29 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Twins is a digital replica of a physical object to observe its real-time performance, gather data, and recommend corrective actions if required to enhance its performance. This fascinating technological idea is now reaching the agriculture fields to transform farming, by creating digital twins of entire farms. This initiative presents an innovative strategy to enhance crop health and yield by creating a digital twin for paddy fields. The aim is to enable early detection of nutrient deficiencies and leaf blast disease, leading to a transformation in agriculture. Creating virtual replicas of plants and fields, the digital twin harnesses real-time data and advanced analytics to transform the way agricultural systems are managed. By integrating remote sensing, data analytics, and various Internet of Things devices like pH, nitrous, potassium, and phosphorus sensors, coupled with a gateway system, the digital twin provides real-time monitoring and analysis of crop health and nutrient levels. Employing advanced machine learning algorithms, notably Convolutional Neural Networks ensures precise and early detection of nutrient deficiencies and crop diseases. This ground-breaking technology provides timely alerts and actionable insights to farmers, enabling proactive decision-making for optimal crop management. This farmland digital twin represents a transformative approach towards agricultural sustainability and enhancing productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数字孪生系统监测病害和养分平衡,改善作物健康状况
数字孪生是一个物理对象的数字复制品,用于观察其实时性能、收集数据,并在必要时建议采取纠正措施以提高其性能。这一令人着迷的技术理念如今已进入农业领域,通过创建整个农场的数字孪生来改变农业生产。这项倡议提出了一项创新战略,通过创建稻田数字双胞胎来提高作物健康和产量。其目的是及早发现养分缺乏症和叶瘟病,从而实现农业转型。数字孪生创建了植物和田地的虚拟复制品,利用实时数据和先进的分析技术改变农业系统的管理方式。通过集成遥感、数据分析和各种物联网设备(如 pH 值、氮、钾和磷传感器)以及网关系统,数字孪生系统可以对作物健康和养分水平进行实时监测和分析。数字孪生系统采用先进的机器学习算法,特别是卷积神经网络,确保对养分缺乏和作物病害进行早期精确检测。这项开创性的技术能为农民提供及时的警报和可行的见解,从而为优化作物管理做出积极的决策。这个农田数字孪生系统是实现农业可持续发展和提高生产力的变革性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS METODA OBLICZANIA WSKAŹNIKA BEZPIECZEŃSTWA INFORMACJI W MEDIACH SPOŁECZNOŚCIOWYCH Z UWZGLĘDNIENIEM DŁUGOŚCI ŚCIEŻKI MIĘDZY KLIENTAMI INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1