Leveraging machine learning and NLP for enhanced cohorting and RxNorm mapping in Electronic Health Records (EHRs)

Ashok Manoharan
{"title":"Leveraging machine learning and NLP for enhanced cohorting and RxNorm mapping in Electronic Health Records (EHRs)","authors":"Ashok Manoharan","doi":"10.30574/wjaets.2024.11.2.0083","DOIUrl":null,"url":null,"abstract":"This work addresses the combination of machine learning (ML) and natural language processing (NLP) approaches to optimize the process of courting and RxNorm mapping inside Electronic Health Records (EHRs). Cohorting patients based on comparable traits or diseases is vital for clinical research, but it generally depends on time-consuming manual techniques and is prone to mistakes. Similarly, mapping pharmaceutical names to standardized codes such as RxNorm promotes interoperability and data analysis but may be challenging owing to variances in how drugs are reported. Leveraging ML and NLP may automate and optimize these procedures, leading to more efficient cohort identification and precise medication mapping. We offer a thorough technique for integrating ML and NLP algorithms in EHR systems, including data preparation, feature engineering, model training, and assessment. Through testing and analysis, we show the usefulness of our technique in enhancing cohorting accuracy and RxNorm mapping precision. The findings underline the promise of ML and NLP in revolutionizing EHR data management, leading to improved patient care and simplified research procedures.","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"53 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.11.2.0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the combination of machine learning (ML) and natural language processing (NLP) approaches to optimize the process of courting and RxNorm mapping inside Electronic Health Records (EHRs). Cohorting patients based on comparable traits or diseases is vital for clinical research, but it generally depends on time-consuming manual techniques and is prone to mistakes. Similarly, mapping pharmaceutical names to standardized codes such as RxNorm promotes interoperability and data analysis but may be challenging owing to variances in how drugs are reported. Leveraging ML and NLP may automate and optimize these procedures, leading to more efficient cohort identification and precise medication mapping. We offer a thorough technique for integrating ML and NLP algorithms in EHR systems, including data preparation, feature engineering, model training, and assessment. Through testing and analysis, we show the usefulness of our technique in enhancing cohorting accuracy and RxNorm mapping precision. The findings underline the promise of ML and NLP in revolutionizing EHR data management, leading to improved patient care and simplified research procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习和 NLP 加强电子健康记录 (EHR) 中的队列和 RxNorm 映射
这项研究将机器学习(ML)和自然语言处理(NLP)方法结合起来,以优化电子健康记录(EHR)中的求医过程和 RxNorm 映射。根据可比特征或疾病对患者进行分组对临床研究至关重要,但这通常依赖于耗时的人工技术,而且容易出错。同样,将药品名称映射到标准化代码(如 RxNorm)可促进互操作性和数据分析,但由于药品报告方式的差异,这可能具有挑战性。利用 ML 和 NLP 可以自动优化这些程序,从而提高队列识别和精确药物映射的效率。我们提供了在 EHR 系统中集成 ML 和 NLP 算法的全面技术,包括数据准备、特征工程、模型训练和评估。通过测试和分析,我们展示了我们的技术在提高队列准确性和 RxNorm 映射精确度方面的实用性。这些发现强调了 ML 和 NLP 在彻底改变电子病历数据管理方面的前景,从而改善了患者护理并简化了研究程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of an innovative Eéducationnel practice in Greek students: The flipped learning Optimization of solar energy using recurrent neural network controller with dc-dc boost, Cuk, and single-ended primary inductor converter (SEPIC) Converters Fungal species associated with the surface of selected green leafy vegetables from Bwari market, Abuja - Nigeria: implications on consumer health Comprehensive analysis of gold and silver trading patterns and future projections Policy approaches for bioenergy development in response to climate change: A conceptual analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1