Optimization of solar energy using recurrent neural network controller with dc-dc boost, Cuk, and single-ended primary inductor converter (SEPIC) Converters
{"title":"Optimization of solar energy using recurrent neural network controller with dc-dc boost, Cuk, and single-ended primary inductor converter (SEPIC) Converters","authors":"Kasim Ali, Mohammad, Sarhan M. Musa","doi":"10.30574/wjaets.2024.12.2.0313","DOIUrl":null,"url":null,"abstract":"The pressing issue of the greenhouse effect demands strategies to reduce carbon dioxide (CO2) emissions, a detrimental gas with widespread adverse effects. The sun, as the ultimate renewable energy source, generates energy without CO2 emissions. Harnessing solar power necessitates a photovoltaic (PV) system equipped with a Maximum Power Point Tracker (MPPT) to optimize energy output. The MPPT adapts to changing environmental conditions and communicates through a Pulse Width Modulator (PWM) to an Insulated Gate Bipolar Transistor (IGBT), which alters its duty cycle to align system resistance with the load. Traditional Perturbation and Observation (P&O) algorithms struggled with environmental variations, but advanced AI-based Recurrent Neural Network (RNN) controllers enhance efficiency. This research compares RNN controllers using three data sets of 104, 201, and 1001 entries with three DC-DC converters: Boost, Cuk, and Single-Ended Primary Inductor Converter (SEPIC).","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.12.2.0313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The pressing issue of the greenhouse effect demands strategies to reduce carbon dioxide (CO2) emissions, a detrimental gas with widespread adverse effects. The sun, as the ultimate renewable energy source, generates energy without CO2 emissions. Harnessing solar power necessitates a photovoltaic (PV) system equipped with a Maximum Power Point Tracker (MPPT) to optimize energy output. The MPPT adapts to changing environmental conditions and communicates through a Pulse Width Modulator (PWM) to an Insulated Gate Bipolar Transistor (IGBT), which alters its duty cycle to align system resistance with the load. Traditional Perturbation and Observation (P&O) algorithms struggled with environmental variations, but advanced AI-based Recurrent Neural Network (RNN) controllers enhance efficiency. This research compares RNN controllers using three data sets of 104, 201, and 1001 entries with three DC-DC converters: Boost, Cuk, and Single-Ended Primary Inductor Converter (SEPIC).