Transfer force perception skills to robot-assisted laminectomy via imitation learning from human demonstrations

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE CAAI Transactions on Intelligence Technology Pub Date : 2024-03-29 DOI:10.1049/cit2.12331
Meng Li, Xiaozhi Qi, Xiaoguang Han, Ying Hu, Bing Li, Yu Zhao, Jianwei Zhang
{"title":"Transfer force perception skills to robot-assisted laminectomy via imitation learning from human demonstrations","authors":"Meng Li,&nbsp;Xiaozhi Qi,&nbsp;Xiaoguang Han,&nbsp;Ying Hu,&nbsp;Bing Li,&nbsp;Yu Zhao,&nbsp;Jianwei Zhang","doi":"10.1049/cit2.12331","DOIUrl":null,"url":null,"abstract":"<p>A comparative study of two force perception skill learning approaches for robot-assisted spinal surgery, the impedance model method and the imitation learning (IL) method, is presented. The impedance model method develops separate models for the surgeon and patient, incorporating spring-damper and bone-grinding models. Expert surgeons' feature parameters are collected and mapped using support vector regression and image navigation techniques. The imitation learning approach utilises long short-term memory networks (LSTM) and addresses accurate data labelling challenges with custom models. Experimental results demonstrate skill recognition rates of 63.61%–74.62% for the impedance model approach, relying on manual feature extraction. Conversely, the imitation learning approach achieves a force perception recognition rate of 91.06%, outperforming the impedance model on curved bone surfaces. The findings demonstrate the potential of imitation learning to enhance skill acquisition in robot-assisted spinal surgery by eliminating the laborious process of manual feature extraction.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 4","pages":"903-916"},"PeriodicalIF":8.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12331","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12331","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A comparative study of two force perception skill learning approaches for robot-assisted spinal surgery, the impedance model method and the imitation learning (IL) method, is presented. The impedance model method develops separate models for the surgeon and patient, incorporating spring-damper and bone-grinding models. Expert surgeons' feature parameters are collected and mapped using support vector regression and image navigation techniques. The imitation learning approach utilises long short-term memory networks (LSTM) and addresses accurate data labelling challenges with custom models. Experimental results demonstrate skill recognition rates of 63.61%–74.62% for the impedance model approach, relying on manual feature extraction. Conversely, the imitation learning approach achieves a force perception recognition rate of 91.06%, outperforming the impedance model on curved bone surfaces. The findings demonstrate the potential of imitation learning to enhance skill acquisition in robot-assisted spinal surgery by eliminating the laborious process of manual feature extraction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对人类示范的模仿学习,将力感知技能转移到机器人辅助椎板切除术中
本文对用于机器人辅助脊柱手术的两种力觉技能学习方法(阻抗模型法和模仿学习法)进行了比较研究。阻抗模型法为外科医生和患者分别建立了模型,其中包含弹簧破坏和骨研磨模型。利用支持向量回归和图像导航技术收集和映射外科医生专家的特征参数。模仿学习方法利用了长短期记忆网络(LSTM),并通过自定义模型解决了精确数据标记的难题。实验结果表明,依靠人工特征提取,阻抗模型方法的技能识别率为 63.61%-74.62%。相反,模仿学习方法的力感知识别率达到 91.06%,在弯曲的骨骼表面上优于阻抗模型。研究结果表明,模仿学习法省去了人工特征提取的繁琐过程,具有提高机器人辅助脊柱手术技能学习的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
期刊最新文献
Guest Editorial: Knowledge-based deep learning system in bio-medicine Guest Editorial: Special issue on trustworthy machine learning for behavioural and social computing A fault-tolerant and scalable boosting method over vertically partitioned data Multi-objective interval type-2 fuzzy linear programming problem with vagueness in coefficient Prediction and optimisation of gasoline quality in petroleum refining: The use of machine learning model as a surrogate in optimisation framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1