Electron Backscatter Diffraction Investigation on Microstructure Evolution of TiB2(p)/Al-Cu Composite after Single-Pass Equal Channel Angular Pressing for Formability Assessment
Sen Yang, Kaikun Wang, Anders E. W. Jarfors, Zhiren Sun, Qipeng Li, Zekun Wang, Zherong Huang
{"title":"Electron Backscatter Diffraction Investigation on Microstructure Evolution of TiB2(p)/Al-Cu Composite after Single-Pass Equal Channel Angular Pressing for Formability Assessment","authors":"Sen Yang, Kaikun Wang, Anders E. W. Jarfors, Zhiren Sun, Qipeng Li, Zekun Wang, Zherong Huang","doi":"10.1007/s11665-024-09396-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the in situ 4 wt.% TiB<sub>2(p)</sub>/Al-Cu composite was prepared through a mixed salt reaction method. To evaluate its formability, hot isothermal compression tests were performed using a Gleeble−3500 system in a temperature range of 480-510 °C and a strain rate range of 0.1-10 s<sup>−1</sup>. A constitutive model of the composites with strain compensation was established, and the true stress–strain curves revealed that the composite exhibited favorable formability at 510 °C. Additionally, single-pass equal channel angular pressing (ECAP) processes were conducted at room temperature and 510 °C to investigate the microstructure evolution of the composite. The distribution of TiB<sub>2</sub> particles was found to be influenced by deformation temperature, while the microstructural characteristics of the aluminum matrix were minimally affected. Furthermore, a comparison between the as-cast composite and the deformed composites revealed the presence of different preferred orientations in the two conditions, and the corresponding paths of texture evolution were estimated accordingly. Remarkably, after undergoing single-pass ECAP, the Schmid factors of composites remained nearly unchanged, demonstrating that deformed composites were still appropriate for processing and as such demonstrating a potential route also for formability assessment.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 5","pages":"3949 - 3959"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-09396-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the in situ 4 wt.% TiB2(p)/Al-Cu composite was prepared through a mixed salt reaction method. To evaluate its formability, hot isothermal compression tests were performed using a Gleeble−3500 system in a temperature range of 480-510 °C and a strain rate range of 0.1-10 s−1. A constitutive model of the composites with strain compensation was established, and the true stress–strain curves revealed that the composite exhibited favorable formability at 510 °C. Additionally, single-pass equal channel angular pressing (ECAP) processes were conducted at room temperature and 510 °C to investigate the microstructure evolution of the composite. The distribution of TiB2 particles was found to be influenced by deformation temperature, while the microstructural characteristics of the aluminum matrix were minimally affected. Furthermore, a comparison between the as-cast composite and the deformed composites revealed the presence of different preferred orientations in the two conditions, and the corresponding paths of texture evolution were estimated accordingly. Remarkably, after undergoing single-pass ECAP, the Schmid factors of composites remained nearly unchanged, demonstrating that deformed composites were still appropriate for processing and as such demonstrating a potential route also for formability assessment.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered