Ze Cui, Qiang Jia, Hongqiang Zhang, Yishu Wang, Limin Ma, Guisheng Zou, Fu Guo
{"title":"Review on Shear Strength and Reliability of Nanoparticle Sintered Joints for Power Electronics Packaging","authors":"Ze Cui, Qiang Jia, Hongqiang Zhang, Yishu Wang, Limin Ma, Guisheng Zou, Fu Guo","doi":"10.1007/s11664-024-10970-9","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of the third-generation semiconductors has posed new requirements and challenges for power electronic packaging. In recent years, the utilization of nano-Ag and Cu sintering has emerged as a promising solution for third-generation semiconductor packaging. Sintered Ag demonstrates remarkable thermal conductivity and exceptional oxidation resistance, while sintered Cu offers economic benefits and superior electromigration resistance compared to sintered Ag. This work reviews the bonding process of Ag and Cu nanoparticles for power electronics packaging, and the shear strength and reliability of sintered joints. The influence of material properties, encompassing particle size, shape, and composition, along with critical sintering parameters such as temperature, pressure, and duration is discussed. Additionally, the pivotal role played by the metallization layer for the sintered bonding process is evaluated. Various reliability test results are summarized and analyzed focusing on their affecting factors. Furthermore, this review explores the broader landscape by delving into the opportunities and challenges posed by sintered Ag and Cu in the realm of power electronic packaging.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"53 6","pages":"2703 - 2726"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-10970-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of the third-generation semiconductors has posed new requirements and challenges for power electronic packaging. In recent years, the utilization of nano-Ag and Cu sintering has emerged as a promising solution for third-generation semiconductor packaging. Sintered Ag demonstrates remarkable thermal conductivity and exceptional oxidation resistance, while sintered Cu offers economic benefits and superior electromigration resistance compared to sintered Ag. This work reviews the bonding process of Ag and Cu nanoparticles for power electronics packaging, and the shear strength and reliability of sintered joints. The influence of material properties, encompassing particle size, shape, and composition, along with critical sintering parameters such as temperature, pressure, and duration is discussed. Additionally, the pivotal role played by the metallization layer for the sintered bonding process is evaluated. Various reliability test results are summarized and analyzed focusing on their affecting factors. Furthermore, this review explores the broader landscape by delving into the opportunities and challenges posed by sintered Ag and Cu in the realm of power electronic packaging.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.