Elastic Modulus Prediction from Indentation Using Machine Learning: Considering Tip Geometric Imperfection

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Metals and Materials International Pub Date : 2024-03-29 DOI:10.1007/s12540-024-01666-0
Jong-hyoung Kim, Dong-Yeob Kim, Junsang Lee, Soon Woo Kwon, Jongheon Kim, Seung-Kyun Kang, Sungeun Hong, Young-Cheon Kim
{"title":"Elastic Modulus Prediction from Indentation Using Machine Learning: Considering Tip Geometric Imperfection","authors":"Jong-hyoung Kim,&nbsp;Dong-Yeob Kim,&nbsp;Junsang Lee,&nbsp;Soon Woo Kwon,&nbsp;Jongheon Kim,&nbsp;Seung-Kyun Kang,&nbsp;Sungeun Hong,&nbsp;Young-Cheon Kim","doi":"10.1007/s12540-024-01666-0","DOIUrl":null,"url":null,"abstract":"<div><p>Instrumented indentation technique provides a simple and quick means to investigate mechanical properties such as hardness and elastic modulus near the material surface. However, accurately predicting plastic pileup/sink-in during indentation remains a hurdle in calibrating real contact depth, affecting precise material property evaluation, especially in metallic materials. This study utilizes machine learning on extensive finite element analysis (FEA) data to exclusively predict elastic modulus from indentation curves. Leveraging comprehensive FEA data from sharp and spherical indentations across diverse material properties, our neural network-based models showcase impressive accuracy, achieving approximately 0.65 and 1.72% Mean Absolute Percentage Error for spherical and sharp indentations, respectively. Furthermore, we address the impact of indenter geometry imperfections on prediction accuracy. Through data normalization and subsequent transfer learning, we effectively minimize the MAPE deviation in predicted elastic modulus between results obtained from perfect and imperfect indenters.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 9","pages":"2440 - 2449"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01666-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Instrumented indentation technique provides a simple and quick means to investigate mechanical properties such as hardness and elastic modulus near the material surface. However, accurately predicting plastic pileup/sink-in during indentation remains a hurdle in calibrating real contact depth, affecting precise material property evaluation, especially in metallic materials. This study utilizes machine learning on extensive finite element analysis (FEA) data to exclusively predict elastic modulus from indentation curves. Leveraging comprehensive FEA data from sharp and spherical indentations across diverse material properties, our neural network-based models showcase impressive accuracy, achieving approximately 0.65 and 1.72% Mean Absolute Percentage Error for spherical and sharp indentations, respectively. Furthermore, we address the impact of indenter geometry imperfections on prediction accuracy. Through data normalization and subsequent transfer learning, we effectively minimize the MAPE deviation in predicted elastic modulus between results obtained from perfect and imperfect indenters.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习从压痕中预测弹性模量:考虑尖端几何缺陷
仪器压痕技术为研究材料表面附近的硬度和弹性模量等机械特性提供了一种简单快捷的方法。然而,准确预测压痕过程中的塑性堆积/沉入仍然是校准实际接触深度的一个障碍,会影响精确的材料属性评估,尤其是金属材料。本研究利用机器学习对大量有限元分析 (FEA) 数据进行分析,专门预测压痕曲线的弹性模量。利用尖锐压痕和球形压痕的综合有限元分析数据,我们基于神经网络的模型展示了令人印象深刻的准确性,球形压痕和尖锐压痕的平均绝对百分比误差分别达到约 0.65% 和 1.72%。此外,我们还解决了压头几何形状缺陷对预测精度的影响。通过数据归一化和随后的迁移学习,我们有效地最小化了完美压头和不完美压头预测结果之间的 MAPE 偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
期刊最新文献
Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling Effect of Annealing Treatment on the Heterogeneous Microstructure and Properties of Cold-Rolled FeCoCrNiMn High-Entropy Alloy Microstructure and Mechanical Properties of Al-Cu-Mn Alloy Mechanically Alloyed with 5 wt% Zr After Multi-Directional Forging Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them Correction: Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1