首页 > 最新文献

Metals and Materials International最新文献

英文 中文
Effect of Pre-Deformation on Precipitation in Al–Zn–Mg–Cu Alloy 预变形对铝锌镁铜合金沉淀的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-29 DOI: 10.1007/s12540-024-01718-5
Yujin Rhee, Elisabeth Thronsen, Oskar Ryggetangen, Calin D. Marioara, Randi Holmestad, Equo Kobayashi

In this work, strengthening effects and evolution of precipitates in a pre-deformed Al–Zn–Mg–Cu alloy during ageing were investigated using Vickers hardness measurements, tensile tests, and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). It was found that all cold rolled conditions had higher mechanical strength than the non-deformed condition for all ageing times and that this effect increases at higher deformation ratios. It was also found that the non-deformed condition has a higher age hardening response than that of the cold rolled conditions. A homogeneous precipitate distribution was observed in the non-deformed condition, while the cold rolled conditions contained non-uniformly distributed precipitates due to the introduced dislocations. This led to larger precipitate sizes and a reduction in the precipitate number densities in the pre-deformed conditions. HAADF-STEM analysis revealed differences in the fraction of different precipitate types between the non-deformed and the cold rolled conditions. η', η2, and disordered η phase were observed in the non-deformed condition, while η', η2 and the newly identified Y phase were observed in the cold rolled conditions. The disordered η phase contained structural units of the η1 phase and was associated with reducing the lattice misfit between this phase and the Al matrix. Formation of the Y phase was related to an accelerated nucleation rate in the regions of high dislocation density.

Graphical abstract

本研究使用维氏硬度测量、拉伸试验和高角度环形暗场扫描透射电子显微镜(HAADF-STEM)研究了预变形铝锌镁铜合金在时效过程中的强化效应和析出物的演变。结果发现,在所有时效时间内,所有冷轧状态的机械强度都高于未变形状态,而且变形率越高,机械强度越高。研究还发现,非变形状态比冷轧状态具有更高的时效硬化响应。非变形条件下析出物分布均匀,而冷轧条件下由于引入了位错,析出物分布不均匀。这导致预变形条件下沉淀尺寸增大,沉淀数量密度降低。HAADF-STEM 分析显示,非变形和冷轧条件下不同类型沉淀的比例存在差异。非变形条件下观察到 η'、η2 和无序的 η 相,而冷轧条件下观察到 η'、η2 和新发现的 Y 相。无序的 η 相包含 η1 相的结构单元,与减少该相和铝基体之间的晶格错位有关。Y 相的形成与高位错密度区域的成核速率加快有关。
{"title":"Effect of Pre-Deformation on Precipitation in Al–Zn–Mg–Cu Alloy","authors":"Yujin Rhee, Elisabeth Thronsen, Oskar Ryggetangen, Calin D. Marioara, Randi Holmestad, Equo Kobayashi","doi":"10.1007/s12540-024-01718-5","DOIUrl":"https://doi.org/10.1007/s12540-024-01718-5","url":null,"abstract":"<p>In this work, strengthening effects and evolution of precipitates in a pre-deformed Al–Zn–Mg–Cu alloy during ageing were investigated using Vickers hardness measurements, tensile tests, and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). It was found that all cold rolled conditions had higher mechanical strength than the non-deformed condition for all ageing times and that this effect increases at higher deformation ratios. It was also found that the non-deformed condition has a higher age hardening response than that of the cold rolled conditions. A homogeneous precipitate distribution was observed in the non-deformed condition, while the cold rolled conditions contained non-uniformly distributed precipitates due to the introduced dislocations. This led to larger precipitate sizes and a reduction in the precipitate number densities in the pre-deformed conditions. HAADF-STEM analysis revealed differences in the fraction of different precipitate types between the non-deformed and the cold rolled conditions. η', η<sub>2,</sub> and disordered η phase were observed in the non-deformed condition, while η', η<sub>2</sub> and the newly identified Y phase were observed in the cold rolled conditions. The disordered η phase contained structural units of the η<sub>1</sub> phase and was associated with reducing the lattice misfit between this phase and the Al matrix. Formation of the Y phase was related to an accelerated nucleation rate in the regions of high dislocation density.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Nb on Microstructure and Wear Property of Laser Cladding CoCrFeNiTiNbx High-Entropy Alloys Coatings 铌对激光熔覆 CoCrFeNiTiNbx 高熵合金涂层微观结构和磨损性能的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-29 DOI: 10.1007/s12540-024-01720-x
Lin Ding, Hongxin Wang, Quan Xiumin

A group of CoCrFeNiTiNbx high entropy alloys (HEAs) coatings were produced by laser cladding. The effect of Nb content on the microstructure and wear resistance of the HEAs coatings was investigated. The results indicated that adding Nb promoted the phase transition from BCC to FCC and the formation of Fe2Nb Laves phase, The diffraction peaks of FCC and BCC phases were firstly shifted to smaller angle as Nb content was increased, and then shifted to larger angle. Adding Nb promoted brittle fracture of more coarse dendrites to formed fine dendrites and equiaxed crystals homogenizing the microstructure in the HEAs coatings, as well as the formation of dense dislocations and dislocation interaction. The microhardness of the HEAs coatings was firstly increased and then decreased as Nb content was increased, and the change of the mass loss and friction coefficient was opposite trend. Compared with CoCrFeNiTiNb0.0 HEAs coatings, the microhardness of the CoCrFeNiTiNb1.0 HEAs coatings was improved by 25.00%, the mass loss was reduced by 28.27%, and and friction coefficient was the lowest. The wear mechanism of the HEAs coatings was transformed from the adhesive wear and oxidative wear accompanied by the abrasive wear to the abrasive wear accompanied by the adhesive wear and oxidative wear as Nb content was gradually increased.

Graphical Abstract

通过激光熔覆技术制备了一组 CoCrFeNiTiNbx 高熵合金(HEAs)涂层。研究了铌含量对 HEAs 涂层微观结构和耐磨性的影响。结果表明,Nb的加入促进了BCC相向FCC相的转变,并促进了Fe2Nb Laves相的形成;随着Nb含量的增加,FCC相和BCC相的衍射峰首先向小角度移动,然后向大角度移动。添加铌促进了更多粗树枝状晶的脆性断裂,形成细树枝状晶和等轴晶粒,使 HEAs 涂层的微观结构均匀化,同时也促进了密集位错和位错相互作用的形成。随着铌含量的增加,HEAs 涂层的显微硬度先增大后减小,质量损失和摩擦系数的变化趋势相反。与 CoCrFeNiTiNb0.0 HEAs 涂层相比,CoCrFeNiTiNb1.0 HEAs 涂层的显微硬度提高了 25.00%,质量损失降低了 28.27%,摩擦系数最小。随着 Nb 含量的逐渐增加,HEAs 涂层的磨损机理由粘着磨损和氧化磨损伴随磨料磨损转变为磨料磨损伴随粘着磨损和氧化磨损。
{"title":"Effect of Nb on Microstructure and Wear Property of Laser Cladding CoCrFeNiTiNbx High-Entropy Alloys Coatings","authors":"Lin Ding, Hongxin Wang, Quan Xiumin","doi":"10.1007/s12540-024-01720-x","DOIUrl":"https://doi.org/10.1007/s12540-024-01720-x","url":null,"abstract":"<p>A group of CoCrFeNiTiNb<sub>x</sub> high entropy alloys (HEAs) coatings were produced by laser cladding. The effect of Nb content on the microstructure and wear resistance of the HEAs coatings was investigated. The results indicated that adding Nb promoted the phase transition from BCC to FCC and the formation of Fe<sub>2</sub>Nb Laves phase, The diffraction peaks of FCC and BCC phases were firstly shifted to smaller angle as Nb content was increased, and then shifted to larger angle. Adding Nb promoted brittle fracture of more coarse dendrites to formed fine dendrites and equiaxed crystals homogenizing the microstructure in the HEAs coatings, as well as the formation of dense dislocations and dislocation interaction. The microhardness of the HEAs coatings was firstly increased and then decreased as Nb content was increased, and the change of the mass loss and friction coefficient was opposite trend. Compared with CoCrFeNiTiNb<sub>0.0</sub> HEAs coatings, the microhardness of the CoCrFeNiTiNb<sub>1.0</sub> HEAs coatings was improved by 25.00%, the mass loss was reduced by 28.27%, and and friction coefficient was the lowest. The wear mechanism of the HEAs coatings was transformed from the adhesive wear and oxidative wear accompanied by the abrasive wear to the abrasive wear accompanied by the adhesive wear and oxidative wear as Nb content was gradually increased.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Laser Shock Peening on Mechanical Properties of Wire Arc Additive Manufactured Grade 91 Steel and Monel-400 Bimetallic Components 激光冲击强化对线弧添加剂制造的 91 级钢和 Monel-400 双金属部件机械性能的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-29 DOI: 10.1007/s12540-024-01722-9
Sivakumar Munusamy, J Jerald

This study investigates the effects of Laser Shock Peening (LSP) on the mechanical properties and microstructure of Wire Arc Additive Manufactured (WAAM) bimetallic components made of Grade 91 Steel and Monel-400. LSP, a surface enhancement technique, was applied to address the residual stress and enhance the mechanical performance of these bimetallic components. Electron Backscatter Diffraction (EBSD) analysis post-LSP showed refined grain structures, contributing to the observed enhancements in mechanical properties. The research revealed that LSP treatment increased the tensile residual stress at the bimetallic interface from 109 ± 2.5 MPa to 185.9 ± 2.5 MPa, indicating a strengthening of the bimetallic interface. The tensile strength of the Grade 91 Steel part increased from 1140 ± 6.5 MPa to 1280 ± 4.5 MPa after LSP, while the Monel-400 section showed a slight decrease in tensile strength from 516 ± 2.5 MPa to 511 ± 6 MPa but an increase in elongation from 31 to 38.5%. Furthermore, microhardness at the interface improved, with a rise from 267 ± 3 HV0.1 to 303 ± 4 HV0.1 post-LSP. The enhanced properties of the bimetallic components are particularly beneficial for applications in the petrochemical and marine industries, where the combined resistance to thermal and corrosive environments is critical. This study provides a new understanding of the application of LSP in improving the mechanical properties of WAAM-produced bimetallic components.

Graphical Abstract

本研究探讨了激光冲击强化(LSP)对由 91 级钢和 Monel-400 制成的线弧添加剂制造(WAAM)双金属部件的机械性能和微观结构的影响。LSP 是一种表面增强技术,用于消除残余应力并提高这些双金属部件的机械性能。LSP 处理后的电子反向散射衍射 (EBSD) 分析表明,晶粒结构得到了细化,从而提高了机械性能。研究表明,LSP 处理使双金属界面的拉伸残余应力从 109 ± 2.5 兆帕增加到 185.9 ± 2.5 兆帕,表明双金属界面得到了强化。在 LSP 之后,91 级钢部分的抗拉强度从 1140 ± 6.5 兆帕增加到 1280 ± 4.5 兆帕,而 Monel-400 部分的抗拉强度略有下降,从 516 ± 2.5 兆帕下降到 511 ± 6 兆帕,但伸长率从 31% 增加到 38.5%。此外,界面处的显微硬度也有所提高,LSP 后从 267 ± 3 HV0.1 提高到 303 ± 4 HV0.1。双金属元件性能的提高尤其有利于石化和海洋行业的应用,因为在这些行业中,耐热性和耐腐蚀性是至关重要的。这项研究为应用 LSP 改善 WAAM 生产的双金属元件的机械性能提供了新的认识。
{"title":"Impact of Laser Shock Peening on Mechanical Properties of Wire Arc Additive Manufactured Grade 91 Steel and Monel-400 Bimetallic Components","authors":"Sivakumar Munusamy, J Jerald","doi":"10.1007/s12540-024-01722-9","DOIUrl":"https://doi.org/10.1007/s12540-024-01722-9","url":null,"abstract":"<p>This study investigates the effects of Laser Shock Peening (LSP) on the mechanical properties and microstructure of Wire Arc Additive Manufactured (WAAM) bimetallic components made of Grade 91 Steel and Monel-400. LSP, a surface enhancement technique, was applied to address the residual stress and enhance the mechanical performance of these bimetallic components. Electron Backscatter Diffraction (EBSD) analysis post-LSP showed refined grain structures, contributing to the observed enhancements in mechanical properties. The research revealed that LSP treatment increased the tensile residual stress at the bimetallic interface from 109 ± 2.5 MPa to 185.9 ± 2.5 MPa, indicating a strengthening of the bimetallic interface. The tensile strength of the Grade 91 Steel part increased from 1140 ± 6.5 MPa to 1280 ± 4.5 MPa after LSP, while the Monel-400 section showed a slight decrease in tensile strength from 516 ± 2.5 MPa to 511 ± 6 MPa but an increase in elongation from 31 to 38.5%. Furthermore, microhardness at the interface improved, with a rise from 267 ± 3 HV0.1 to 303 ± 4 HV0.1 post-LSP. The enhanced properties of the bimetallic components are particularly beneficial for applications in the petrochemical and marine industries, where the combined resistance to thermal and corrosive environments is critical. This study provides a new understanding of the application of LSP in improving the mechanical properties of WAAM-produced bimetallic components.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurements of Enthalpies of Mixing of Sn–Ga–In Ternary Alloy System by Calorimetric Technique 利用量热技术测量锡-镓-铟三元合金体系的混合焓
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-28 DOI: 10.1007/s12540-024-01726-5
Vikrant Singh, Dileep Pathote, Dheeraj Jaiswal, Kamalesh K. Singh, C. K. Behera

The ultimate objective of this study is to find a way to replace toxic lead-based solder with a non-toxic replacement that retains all of the desirable characteristics of the conventional solder. In this work, the integral and partial enthalpy of mixing for Sn–Ga–In ternary alloy systems were measured by the help of drop calorimeter along six of the cross sections at different temperatures of 673 K, 723 K and 773 K. Pieces of pure tin were dropped into molten Ga0.25In0.75, Ga0.50In0.50, Ga0.75In0.25 alloys and pieces of pure Indium into Ga0.25Sn0.75, Ga0.50Sn0.50, Ga0.75Sn0.25. In order to calculate the interaction parameter, Redlich–Kister–Muggianu (RKM) model was used which considers the substitutional solution mechanism. Geometric models i.e. Kohler, Muggianu, Chou, Toop, and Hillert have been used to determine the integral mixing enthalpies and compared with experimental data. It has been seen a good agreement between the theoretical models and results of this study.

Graphical Abstract

这项研究的最终目标是找到一种方法,用一种无毒的替代品取代有毒的铅基焊料,同时保留传统焊料的所有理想特性。在这项工作中,利用滴入式量热计测量了锡-镓-铟三元合金体系在 673 K、723 K 和 773 K 不同温度下沿六个横截面的整体混合焓和部分混合焓。将纯锡块滴入熔融的 Ga0.25In0.75、Ga0.50In0.50、Ga0.75In0.25 合金中,并将纯铟块滴入 Ga0.25Sn0.75、Ga0.50Sn0.50、Ga0.75Sn0.25 中。为了计算相互作用参数,使用了考虑置换溶解机制的 Redlich-Kister-Muggianu (RKM) 模型。Kohler、Muggianu、Chou、Toop 和 Hillert 等几何模型被用来确定积分混合焓,并与实验数据进行比较。结果表明,理论模型与研究结果之间存在良好的一致性。
{"title":"Measurements of Enthalpies of Mixing of Sn–Ga–In Ternary Alloy System by Calorimetric Technique","authors":"Vikrant Singh, Dileep Pathote, Dheeraj Jaiswal, Kamalesh K. Singh, C. K. Behera","doi":"10.1007/s12540-024-01726-5","DOIUrl":"https://doi.org/10.1007/s12540-024-01726-5","url":null,"abstract":"<p>The ultimate objective of this study is to find a way to replace toxic lead-based solder with a non-toxic replacement that retains all of the desirable characteristics of the conventional solder. In this work, the integral and partial enthalpy of mixing for Sn–Ga–In ternary alloy systems were measured by the help of drop calorimeter along six of the cross sections at different temperatures of 673 K, 723 K and 773 K. Pieces of pure tin were dropped into molten Ga<sub>0.25</sub>In<sub>0.75</sub>, Ga<sub>0.50</sub>In<sub>0.50</sub>, Ga<sub>0.75</sub>In<sub>0.25</sub> alloys and pieces of pure Indium into Ga<sub>0.25</sub>Sn<sub>0.75</sub>, Ga<sub>0.50</sub>Sn<sub>0.50</sub>, Ga<sub>0.75</sub>Sn<sub>0.25</sub>. In order to calculate the interaction parameter, Redlich–Kister–Muggianu (RKM) model was used which considers the substitutional solution mechanism. Geometric models i.e. Kohler, Muggianu, Chou, Toop, and Hillert have been used to determine the integral mixing enthalpies and compared with experimental data. It has been seen a good agreement between the theoretical models and results of this study.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature 更正:硅化物和 α2 相对 TC25G 合金高温蠕变行为的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s12540-024-01719-4
Zhuomeng Liu, Shewei Xin, Yongqing Zhao, Bohao Dang
{"title":"Correction: Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature","authors":"Zhuomeng Liu, Shewei Xin, Yongqing Zhao, Bohao Dang","doi":"10.1007/s12540-024-01719-4","DOIUrl":"https://doi.org/10.1007/s12540-024-01719-4","url":null,"abstract":"","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic Study on the Blister Formation Mechanism in Electrogalvanized Steel 电镀锌钢中水泡形成机理的显微研究
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s12540-024-01723-8
Sang-Hoon Shin, T. T. T. Trang, Bong-Hoon Chung, Yong-Gyun Jeong, Jae-Sang Lee, Yoon-Uk Heo

The blister formation mechanism in electrogalvanized steel was studied by analyzing the blister’s internal structure. Electrochemical hydrogen charging was employed to absorb hydrogen into the steel plate and to induce blister formation. Analysis of the blister interior revealed that the initial formation of blisters occurred at the cracks located at the interface between the zinc layer and the steel substrate. These cracks originated from the steel substrate’s intergranular fracture or carbon contaminants’ adsorption on the steel surface. Grain boundary precipitates in hot-rolled plates form the intergranular crack after cold-rolling. A hydrogen anion was found inside the blister formed at the pre-existing intergranular crack. However, methylidyne (CH) and methylene anion (CH2) dissociated from methane, as well as hydrogen anions were detected inside the blister formed at the carbon-contaminated steel surface. Methane gas is generated by the combination of absorbed hydrogen with carbon inside the crack. This research clarifies the detailed formation mechanism of blisters in electrogalvanized steel.

Graphical Abstract

通过分析水泡的内部结构,研究了电镀锌钢板中水泡的形成机理。采用电化学充氢方法将氢气吸收到钢板中,诱导水泡的形成。对水泡内部结构的分析表明,水泡最初是在锌层与钢基板之间的界面裂缝处形成的。这些裂缝源于钢基体的晶间断裂或钢材表面的碳污染物吸附。热轧板中的晶界析出物在冷轧后形成晶间裂纹。在已经存在的晶间裂纹处形成的水泡内发现了氢阴离子。然而,在碳污染钢表面形成的水泡内检测到了从甲烷中离解出的甲基乙炔(CH-)和亚甲基阴离子(CH2-)以及氢阴离子。甲烷气体是由裂缝内吸收的氢与碳结合产生的。这项研究阐明了电镀锌钢中水泡的详细形成机制。
{"title":"Microscopic Study on the Blister Formation Mechanism in Electrogalvanized Steel","authors":"Sang-Hoon Shin, T. T. T. Trang, Bong-Hoon Chung, Yong-Gyun Jeong, Jae-Sang Lee, Yoon-Uk Heo","doi":"10.1007/s12540-024-01723-8","DOIUrl":"https://doi.org/10.1007/s12540-024-01723-8","url":null,"abstract":"<p>The blister formation mechanism in electrogalvanized steel was studied by analyzing the blister’s internal structure. Electrochemical hydrogen charging was employed to absorb hydrogen into the steel plate and to induce blister formation. Analysis of the blister interior revealed that the initial formation of blisters occurred at the cracks located at the interface between the zinc layer and the steel substrate. These cracks originated from the steel substrate’s intergranular fracture or carbon contaminants’ adsorption on the steel surface. Grain boundary precipitates in hot-rolled plates form the intergranular crack after cold-rolling. A hydrogen anion was found inside the blister formed at the pre-existing intergranular crack. However, methylidyne (CH<sup>−</sup>) and methylene anion (CH<sub>2</sub><sup>−</sup>) dissociated from methane, as well as hydrogen anions were detected inside the blister formed at the carbon-contaminated steel surface. Methane gas is generated by the combination of absorbed hydrogen with carbon inside the crack. This research clarifies the detailed formation mechanism of blisters in electrogalvanized steel.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Nb on Austenite Grain Growth in 10Cr-3Co-2W Martensitic Heat-Resistant Steel Nb 对 10Cr-3Co-2W 马氏体耐热钢中奥氏体晶粒长大的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-22 DOI: 10.1007/s12540-024-01721-w
Bong Cheon Park, Sung-Dae Kim, Ihho Park, Jong-Ho Shin, Jae Hoon Jang, Namhyun Kang

Abstract

The effect of Nb on austenite grain growth kinetics was investigated in 10Cr-3Co-2W martensitic heat-resistant steel under various tempering conditions (temperature and time). The results demonstrate that Nb effectively refines the austenite grain size; this result is attributed to the combined effect of Nb atom solute drag effect and pinning effect of NbC precipitates. Based on the measured values, an empirical model was developed to predict the grain growth behavior of this alloy system. In addition, the key conditions and parameters for application to the microstructure evolution model of MatCalc software were derived. Results will enable the prediction of grain size at different Nb contents and temperature parameters, and provide useful information for designing heat treatment processes and alloys.

Graphic Abstract

摘要 在不同回火条件(温度和时间)下,研究了 Nb 对 10Cr-3Co-2W 马氏体耐热钢中奥氏体晶粒长大动力学的影响。结果表明,铌能有效细化奥氏体晶粒尺寸;这一结果归因于铌原子溶质拖曳效应和 NbC 沉淀的钉扎效应的共同作用。根据测量值,建立了一个经验模型来预测该合金体系的晶粒生长行为。此外,还得出了应用于 MatCalc 软件微结构演变模型的关键条件和参数。研究结果将有助于预测不同铌含量和温度参数下的晶粒大小,并为设计热处理工艺和合金提供有用信息。
{"title":"Effect of Nb on Austenite Grain Growth in 10Cr-3Co-2W Martensitic Heat-Resistant Steel","authors":"Bong Cheon Park, Sung-Dae Kim, Ihho Park, Jong-Ho Shin, Jae Hoon Jang, Namhyun Kang","doi":"10.1007/s12540-024-01721-w","DOIUrl":"https://doi.org/10.1007/s12540-024-01721-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The effect of Nb on austenite grain growth kinetics was investigated in 10Cr-3Co-2W martensitic heat-resistant steel under various tempering conditions (temperature and time). The results demonstrate that Nb effectively refines the austenite grain size; this result is attributed to the combined effect of Nb atom solute drag effect and pinning effect of NbC precipitates. Based on the measured values, an empirical model was developed to predict the grain growth behavior of this alloy system. In addition, the key conditions and parameters for application to the microstructure evolution model of MatCalc software were derived. Results will enable the prediction of grain size at different Nb contents and temperature parameters, and provide useful information for designing heat treatment processes and alloys.</p><h3 data-test=\"abstract-sub-heading\">Graphic Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Oxygen Injections on the Porosity of High Pressure Die Castings 喷氧对高压压铸件孔隙率的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-19 DOI: 10.1007/s12540-024-01713-w
Gi Geun Hong, Sung Su Jung, Yoon Suk Choi, Young Cheol Lee

This study aims to investigate the role of oxygen in optimizing the Pore-Free Die Casting (PFDC) process to enhance the quality of aluminum castings by minimizing porosity defects. The effects of oxygen levels on the integrity of high pressure die casting specimens was investigated by injecting oxygen at different durations (1 s, 3 s, and 5 s) through air jet valves installed at the mold cavity. The CT results indicate that increasing the oxygen injection time significantly reduces the porosity volume from 0.9 to 0.18%, with smaller defects in size as well. Notably, after applying the PFDC process, the elongation improved from 2.23 to 4.58%, suggesting that replacing atmosphere in the cavity space with oxygen plays a crucial role in enhancing the mechanical properties of the HPDC specimens. The improvement is believed to be caused by promoting oxidation reactions with the high concentration of oxygen, which leads to a decrease in gas entrapment during the casting process.

Graphical Abstract

本研究旨在探讨氧气在优化无气孔压铸(PFDC)工艺中的作用,通过最大限度地减少气孔缺陷来提高铝铸件的质量。研究人员通过安装在模具型腔处的空气喷射阀以不同的持续时间(1 秒、3 秒和 5 秒)喷射氧气,研究了氧气水平对高压压铸试样完整性的影响。CT 结果表明,增加氧气喷射时间可显著减少气孔,气孔率从 0.9% 降至 0.18%,缺陷尺寸也更小。值得注意的是,在采用 PFDC 工艺后,伸长率从 2.23% 提高到 4.58%,这表明用氧气取代型腔空间中的大气对提高 HPDC 试样的机械性能起着至关重要的作用。这种改善被认为是由于高浓度氧气促进了氧化反应,从而减少了浇铸过程中的气体截留。
{"title":"Effect of Oxygen Injections on the Porosity of High Pressure Die Castings","authors":"Gi Geun Hong, Sung Su Jung, Yoon Suk Choi, Young Cheol Lee","doi":"10.1007/s12540-024-01713-w","DOIUrl":"https://doi.org/10.1007/s12540-024-01713-w","url":null,"abstract":"<p>This study aims to investigate the role of oxygen in optimizing the Pore-Free Die Casting (PFDC) process to enhance the quality of aluminum castings by minimizing porosity defects. The effects of oxygen levels on the integrity of high pressure die casting specimens was investigated by injecting oxygen at different durations (1 s, 3 s, and 5 s) through air jet valves installed at the mold cavity. The CT results indicate that increasing the oxygen injection time significantly reduces the porosity volume from 0.9 to 0.18%, with smaller defects in size as well. Notably, after applying the PFDC process, the elongation improved from 2.23 to 4.58%, suggesting that replacing atmosphere in the cavity space with oxygen plays a crucial role in enhancing the mechanical properties of the HPDC specimens. The improvement is believed to be caused by promoting oxidation reactions with the high concentration of oxygen, which leads to a decrease in gas entrapment during the casting process.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Effects of CoMoCrSi Powder Composition and Particle Size, and Annealing Heat Treatment on Microstructure and Mechanical and Tribological Performance of HVOF Sprayed Coatings 研究 CoMoCrSi 粉末成分和粒度以及退火热处理对 HVOF 喷涂涂层的微观结构和机械及摩擦学性能的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-16 DOI: 10.1007/s12540-024-01717-6
Murat Tolga Ertürk, Süha Tirkeş, Cemil Hakan Gür
{"title":"Investigating the Effects of CoMoCrSi Powder Composition and Particle Size, and Annealing Heat Treatment on Microstructure and Mechanical and Tribological Performance of HVOF Sprayed Coatings","authors":"Murat Tolga Ertürk, Süha Tirkeş, Cemil Hakan Gür","doi":"10.1007/s12540-024-01717-6","DOIUrl":"https://doi.org/10.1007/s12540-024-01717-6","url":null,"abstract":"","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Composition Design, Microstructure, Wear and Corrosion Resistant of Duplex Stainless Steels Based on Machine Learning 基于机器学习的双相不锈钢成分设计、微观结构、耐磨性和耐腐蚀性研究
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-16 DOI: 10.1007/s12540-024-01714-9
Jing Liang, Nanying Lv, Zhina Xie, Xiuyuan Yin, Suiyuan Chen, Changsheng Liu

Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an R2 value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV0.2, good wear resistance (1.2579 × 10–13 m3/Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance.

Graphical Abstract

双相不锈钢(DSS)具有良好的耐磨性和耐腐蚀性,可替代马氏体不锈钢作为水轮机叶片的材料。然而,使用传统的试错法设计具有高耐磨性和耐腐蚀性的 DSS 需要大量的时间和成本。本研究提出了一种基于机器学习(ML)的材料设计方法,以加速新型 DSS 的开发。该研究建立了用于 DSS 的成分-工艺-性能数据库,并采用 K-近邻回归(KNR)、岭回归(RR)、决策树(DT)和随机森林(RF)等四种 ML 模型来训练该数据库。对 DSS 的耐磨性和耐腐蚀性进行了预测。它们的预测值和实际值表现出良好的一致性。在四个模型中,RF 模型对显微硬度和自腐蚀潜能的预测性能最好,R2 值分别为 0.90 和 0.87。采用射频模型进行三轮筛选,在 69 120 种成分-工艺组合中获得了三种具有高耐磨性和耐腐蚀性的 DSS 成分,分别命名为 1Cr29Ni11Mo3.5N、1Cr29Ni8Mo4.5N 和 1Cr29Ni10Mo4.5N。通过激光熔融沉积(LMD)相应的样品进一步研究了这些优化成分。实验结果表明,三种样品中铁素体与奥氏体的体积比均达到了 3:7。具体而言,1Cr29Ni11Mo3.5N 的显微硬度为 356 HV0.2,耐磨性良好(磨损率为 1.2579 × 10-13 m3/Nm),自腐蚀电位为 - 0.12494 V。
{"title":"Study on the Composition Design, Microstructure, Wear and Corrosion Resistant of Duplex Stainless Steels Based on Machine Learning","authors":"Jing Liang, Nanying Lv, Zhina Xie, Xiuyuan Yin, Suiyuan Chen, Changsheng Liu","doi":"10.1007/s12540-024-01714-9","DOIUrl":"https://doi.org/10.1007/s12540-024-01714-9","url":null,"abstract":"<p>Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an <i>R</i><sup>2</sup> value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV<sub>0.2</sub>, good wear resistance (1.2579 × 10<sup>–13</sup> m<sup>3</sup>/Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metals and Materials International
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1