首页 > 最新文献

Metals and Materials International最新文献

英文 中文
Kinetics of Silicon Carbide Dissolution in Molten Fe–C Alloys
IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-23 DOI: 10.1007/s12540-024-01856-w
Joon Beom Park, Moo Eob Choi, Hyeonwoo Park, Jiwoo Park, Joonho Lee

The dissolution rate of SiC in molten Fe–C alloys was investigated at 1673 ~ 1773 K, while the initial carbon concentration varied from approximately 2–3 wt%. The dissolution of SiC in molten Fe–C alloys occurred to reach the carbon-saturation composition. By assuming a first-order reaction, the dissolution rate constant was estimated to decrease from 8.17 × 10−3 to 2.90 × 10−3 cm/s, as the initial carbon content increased from 2 to 3 wt% at 1673 K. When the temperature increased from 1673 to 1773 K with the sample of the initial carbon content of about 2 wt%, the rate constant increased from 8.17 × 10−3 to 18.41 × 10−3 cm/s. The apparent activation energy was estimated at 199.5 kJ/mol. Based on the experimental results, an empirical equation was suggested for the estimation of the SiC dissolution rate constant: (ln kleft( {cm/s} right) = 12.74 - 1.37 times left[ {wt% C} right]_{t = 0} - 2.40 times 10^{4} /Tleft( K right)), which can be applied to the numerical simulation of the Si-pickup in the FINEX and the Hydrogen-enriched Blast Furnace operations.

Graphical Abstract

{"title":"Kinetics of Silicon Carbide Dissolution in Molten Fe–C Alloys","authors":"Joon Beom Park,&nbsp;Moo Eob Choi,&nbsp;Hyeonwoo Park,&nbsp;Jiwoo Park,&nbsp;Joonho Lee","doi":"10.1007/s12540-024-01856-w","DOIUrl":"10.1007/s12540-024-01856-w","url":null,"abstract":"<div><p>The dissolution rate of SiC in molten Fe–C alloys was investigated at 1673 ~ 1773 K, while the initial carbon concentration varied from approximately 2–3 wt%. The dissolution of SiC in molten Fe–C alloys occurred to reach the carbon-saturation composition. By assuming a first-order reaction, the dissolution rate constant was estimated to decrease from 8.17 × 10<sup>−3</sup> to 2.90 × 10<sup>−3</sup> cm/s, as the initial carbon content increased from 2 to 3 wt% at 1673 K. When the temperature increased from 1673 to 1773 K with the sample of the initial carbon content of about 2 wt%, the rate constant increased from 8.17 × 10<sup>−3</sup> to 18.41 × 10<sup>−3</sup> cm/s. The apparent activation energy was estimated at 199.5 kJ/mol. Based on the experimental results, an empirical equation was suggested for the estimation of the SiC dissolution rate constant: <span>(ln kleft( {cm/s} right) = 12.74 - 1.37 times left[ {wt% C} right]_{t = 0} - 2.40 times 10^{4} /Tleft( K right))</span>, which can be applied to the numerical simulation of the Si-pickup in the FINEX and the Hydrogen-enriched Blast Furnace operations.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 12","pages":"3537 - 3543"},"PeriodicalIF":3.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Evaluation for Influence of Ca Treatment and Slag Composition on Compositional Changes in Non-metallic Inclusion Using Coupled Reaction Model for Ladle Treatment
IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1007/s12540-024-01833-3
Jeong-In Kim, Sun-Joong Kim

Nonmetallic inclusions significantly affect the final quality of steel production. Mg-Al spinel inclusions, which are known for their high deformability, are particularly detrimental. Thus, controlling these favorable liquidus inclusions, such as Ca-Al inclusions, is crucial. The evolution of Ca-Al inclusions is primarily driven by the [Ca] source in molten steel, which is supplied by slag or the addition of Ca to the molten steel. Inclusions exhibit three physical behaviors: flotation into the slag, entrapment from the slag, and agglomeration within each inclusion. A numerical model grounded in a coupled reaction model was established to investigate these inclusion behaviors, with a focus on the evolution of the Ca-Al system inclusions. These findings indicate that the [Ca] concentration in molten steel drives the evolution of Ca-Al inclusions, but the rate of evolution is limited by the mass transfer rate of the Ca source into the inclusion. Moreover, slag composition, particularly the higher basicity and slags enriched with Ca sources, such as CaF2, significantly influence the inclusion composition, reaching a composition closer to the liquid phase. Additionally, it was found that the physical behavior of inclusions, particularly entrapment from slag, plays a crucial role in controlling the inclusion composition. This study further discusses methods for controlling the liquidus composition of inclusions.

Graphical abstract

{"title":"Numerical Evaluation for Influence of Ca Treatment and Slag Composition on Compositional Changes in Non-metallic Inclusion Using Coupled Reaction Model for Ladle Treatment","authors":"Jeong-In Kim,&nbsp;Sun-Joong Kim","doi":"10.1007/s12540-024-01833-3","DOIUrl":"10.1007/s12540-024-01833-3","url":null,"abstract":"<div><p>Nonmetallic inclusions significantly affect the final quality of steel production. Mg-Al spinel inclusions, which are known for their high deformability, are particularly detrimental. Thus, controlling these favorable liquidus inclusions, such as Ca-Al inclusions, is crucial. The evolution of Ca-Al inclusions is primarily driven by the [Ca] source in molten steel, which is supplied by slag or the addition of Ca to the molten steel. Inclusions exhibit three physical behaviors: flotation into the slag, entrapment from the slag, and agglomeration within each inclusion. A numerical model grounded in a coupled reaction model was established to investigate these inclusion behaviors, with a focus on the evolution of the Ca-Al system inclusions. These findings indicate that the [Ca] concentration in molten steel drives the evolution of Ca-Al inclusions, but the rate of evolution is limited by the mass transfer rate of the Ca source into the inclusion. Moreover, slag composition, particularly the higher basicity and slags enriched with Ca sources, such as CaF<sub>2</sub>, significantly influence the inclusion composition, reaching a composition closer to the liquid phase. Additionally, it was found that the physical behavior of inclusions, particularly entrapment from slag, plays a crucial role in controlling the inclusion composition. This study further discusses methods for controlling the liquidus composition of inclusions.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 12","pages":"3523 - 3536"},"PeriodicalIF":3.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Evaporation of Sb from Molten Fe–C–S Alloys for Sustainable Steelmaking Supported by Experiment and Mechanisms Analysis
IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-24 DOI: 10.1007/s12540-024-01817-3
Won-Bum Park, Chanumul Jung, Youn-Bae Kang

 Sb is one of the tramp elements that remain in molten steel during the steelmaking process. It is generally known to be difficult to remove it from the molten steel. In order to develop a feasible process to remove Sb from molten steel, the evaporation reaction of Sb from molten steel was investigated by high-temperature liquid–gas experiments using an electromagnetic levitation melting technique and kinetic analysis. The evaporation rate of Sb was measured by varying the flow rate of incoming gas (Q), temperature (T), initial C content ([pct C](_0)), and initial S content ([pct S](_0)) in molten Fe–C–S–Sb alloys. It was found that the evaporation rate of Sb accelerated by S due to the formation of the sulfide gas species (SbS(g)) and by C due to increasing the activity coefficient of Sb ((f_{textrm{Sb}})) and S ((f_{text {S}})). On the other hand, the evaporation rate of Sb decelerated by S due to the blocking of the molten steel surface. Based on the established mechanism, a model of Sb evaporation from molten Fe–C–S–Sb alloy was developed in the present study, which considers (1) actual evaporating species, (2) surface blocking by S using ideal Langmuir adsorption, and (3) effect of C and temperature on (f_{text {Sb}}) and (f_{text {S}}). With the established model, the extent of Cu, Sn, and Sb removal in the molten steel was assessed. It turned out that Cu has the fastest removal rate, followed by Sb, with Sn being the slowest for molten steel containing 0.1 pct C and 0.01 pct S at 1650 (^circ )C.

{"title":"Modeling Evaporation of Sb from Molten Fe–C–S Alloys for Sustainable Steelmaking Supported by Experiment and Mechanisms Analysis","authors":"Won-Bum Park,&nbsp;Chanumul Jung,&nbsp;Youn-Bae Kang","doi":"10.1007/s12540-024-01817-3","DOIUrl":"10.1007/s12540-024-01817-3","url":null,"abstract":"<p> Sb is one of the tramp elements that remain in molten steel during the steelmaking process. It is generally known to be difficult to remove it from the molten steel. In order to develop a feasible process to remove Sb from molten steel, the evaporation reaction of Sb from molten steel was investigated by high-temperature liquid–gas experiments using an electromagnetic levitation melting technique and kinetic analysis. The evaporation rate of Sb was measured by varying the flow rate of incoming gas (<i>Q</i>), temperature (<i>T</i>), initial C content ([pct C]<span>(_0)</span>), and initial S content ([pct S]<span>(_0)</span>) in molten Fe–C–S–Sb alloys. It was found that the evaporation rate of Sb accelerated by S due to the formation of the sulfide gas species (SbS(g)) and by C due to increasing the activity coefficient of Sb (<span>(f_{textrm{Sb}})</span>) and S (<span>(f_{text {S}})</span>). On the other hand, the evaporation rate of Sb decelerated by S due to the blocking of the molten steel surface. Based on the established mechanism, a model of Sb evaporation from molten Fe–C–S–Sb alloy was developed in the present study, which considers (1) actual evaporating species, (2) surface blocking by S using ideal Langmuir adsorption, and (3) effect of C and temperature on <span>(f_{text {Sb}})</span> and <span>(f_{text {S}})</span>. With the established model, the extent of Cu, Sn, and Sb removal in the molten steel was assessed. It turned out that Cu has the fastest removal rate, followed by Sb, with Sn being the slowest for molten steel containing 0.1 pct C and 0.01 pct S at 1650 <span>(^circ )</span>C.</p>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 12","pages":"3497 - 3512"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction Mechanism of MgAl2O4 Refractories in Contact with a Liquid Ferromanganese Metal
IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-22 DOI: 10.1007/s12540-024-01820-8
Jaewoo Myung, Jiwon Park, Kyung-Ho Kim, Hiroyuki Shibata, Yunki Byeun, Yongsug Chung

A reaction mechanism is suggested for two types of MgAl2O4 refractories; a MgAl2O4 and a MgO-rich MgAl2O4, which were reacted with a liquid ferromanganese metal. The finger rotating test (FRT) technique was adopted and experiments were carried out at 1873 K. After the experiments, each refractory was analyzed by X-ray computed tomography, field emission scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. When the MgAl2O4 was in contact with the liquid ferromanganese metal, complex (Mg,Mn)(Mn,Al)2O4 layers were formed at the surface of the refractory. It acted as a passive layer since manganese ions did not penetrate into the bulk of the refractory with increasing reaction time. However, when the MgO-rich MgAl2O4 was in contact with liquid ferromanganese metal, manganese ions selectively penetrated through the MgO grains, which led to the formation of a (MgxMn1-x)O solid solution. The penetration depth increased both with increasing reaction time and rotating speed. The characteristics of the reaction layers were analyzed by XRD and EDX and, a possible mechanism to form these layers was suggested based on thermodynamic consideration.

Graphical Abstract

{"title":"Reaction Mechanism of MgAl2O4 Refractories in Contact with a Liquid Ferromanganese Metal","authors":"Jaewoo Myung,&nbsp;Jiwon Park,&nbsp;Kyung-Ho Kim,&nbsp;Hiroyuki Shibata,&nbsp;Yunki Byeun,&nbsp;Yongsug Chung","doi":"10.1007/s12540-024-01820-8","DOIUrl":"10.1007/s12540-024-01820-8","url":null,"abstract":"<div><p>A reaction mechanism is suggested for two types of MgAl<sub>2</sub>O<sub>4</sub> refractories; a MgAl<sub>2</sub>O<sub>4</sub> and a MgO-rich MgAl<sub>2</sub>O<sub>4</sub>, which were reacted with a liquid ferromanganese metal. The finger rotating test (FRT) technique was adopted and experiments were carried out at 1873 K. After the experiments, each refractory was analyzed by X-ray computed tomography, field emission scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. When the MgAl<sub>2</sub>O<sub>4</sub> was in contact with the liquid ferromanganese metal, complex (Mg,Mn)(Mn,Al)<sub>2</sub>O<sub>4</sub> layers were formed at the surface of the refractory. It acted as a passive layer since manganese ions did not penetrate into the bulk of the refractory with increasing reaction time. However, when the MgO-rich MgAl<sub>2</sub>O<sub>4</sub> was in contact with liquid ferromanganese metal, manganese ions selectively penetrated through the MgO grains, which led to the formation of a (Mg<sub>x</sub>Mn<sub>1-x</sub>)O solid solution. The penetration depth increased both with increasing reaction time and rotating speed. The characteristics of the reaction layers were analyzed by XRD and EDX and, a possible mechanism to form these layers was suggested based on thermodynamic consideration.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 12","pages":"3513 - 3522"},"PeriodicalIF":3.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling 冷皮尔格轧制过程中 Zr-Sn-Nb-Fe 合金管的微结构和纹理演变
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12540-024-01799-2
Xufeng Wang, Jun Zhou, Yuanzhuo Liu, Linjiang Chai, Yue Liu, Haiqin Zhang, Haiming Liu, Bin Tang, Xiangyi Xue, Jinshan Li

In this study, a cold-pilgered Zr alloy tube with the composition of Zr-1.0 wt%Sn-1.0 wt%Nb-0.3 wt%Fe was investigated. During the cold pilgering, the tube developed distinct microstructural and textural features at different positions (with varying internal/external diameters and wall thicknesses) due to their specific stress states and deformation amount. Microstructural and textural evolution during cold pilgering were analyzed by characterizing specimens (S0-S4) cut from typical tube positions mainly using electron channeling contrast imaging and electron backscatter diffraction techniques. Transmission electron microscopy was also utilized to reveal typical precipitates in the un-pilgered specimen (S0). Results indicate that at low/medium strains, there exist non-deformation grains with hard orientations in the pilgered tube specimens, leading to heterogeneous microstructures. With increasing strains, the tube specimens show continuously reduced grain sizes and increased kernel average misorientations along with higher fractions of low angle boundaries, resulting in enhanced microstructural homogeneity. During the pilgering, the texture of Zr-1.0Sn-1.0Nb-0.3Fe alloy tube gradually transforms from initial c//TD to c//RD, which changes back to the c//TD at high strains (>∼ 60%). In the meantime, the < 10–10>//AD component is initially weakened slightly but then significantly enhanced, while there is an opposite trend for that of the < 11–20>//AD component. According to the analysis of in-grain misorientation axes, the textural evolution during the pilgering results from the coordination of multiple slip systems and the pyramidal slip can be substantially activated at a high strain.

Graphical Abstract

本研究对成分为 Zr-1.0 wt%Sn-1.0 wt%Nb-0.3 wt%Fe 的冷拉锆合金管进行了研究。在冷拉过程中,由于其特定的应力状态和变形量,管材在不同位置(内径/外径和壁厚不同)形成了不同的微观结构和纹理特征。我们主要利用电子通道对比成像和电子反向散射衍射技术,对从典型管材位置切割的试样(S0-S4)进行了表征,从而分析了冷扎过程中的微观结构和纹理演变。此外,还利用透射电子显微镜揭示了未拉丝试样(S0)中的典型沉淀物。结果表明,在低/中应变下,有栅栏管试样中存在硬取向的非变形晶粒,从而形成异质微观结构。随着应变的增加,管状试样的晶粒大小不断减小,晶核平均错误取向不断增加,低角度边界的比例也越来越高,从而提高了微观结构的均匀性。在拉伸过程中,Zr-1.0Sn-1.0Nb-0.3Fe 合金管的纹理从最初的 c//TD 逐渐转变为 c//RD,在高应变(>∼ 60%)时又变回 c//TD。同时,< 10-10>//AD分量最初略有减弱,但随后明显增强,而< 11-20>//AD分量的趋势则相反。根据晶粒内错向轴的分析,拉伸过程中的纹理演变是多种滑移系统协调作用的结果,金字塔滑移在高应变时会被大幅激活。
{"title":"Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling","authors":"Xufeng Wang, Jun Zhou, Yuanzhuo Liu, Linjiang Chai, Yue Liu, Haiqin Zhang, Haiming Liu, Bin Tang, Xiangyi Xue, Jinshan Li","doi":"10.1007/s12540-024-01799-2","DOIUrl":"https://doi.org/10.1007/s12540-024-01799-2","url":null,"abstract":"<p>In this study, a cold-pilgered Zr alloy tube with the composition of Zr-1.0 wt%Sn-1.0 wt%Nb-0.3 wt%Fe was investigated. During the cold pilgering, the tube developed distinct microstructural and textural features at different positions (with varying internal/external diameters and wall thicknesses) due to their specific stress states and deformation amount. Microstructural and textural evolution during cold pilgering were analyzed by characterizing specimens (S0-S4) cut from typical tube positions mainly using electron channeling contrast imaging and electron backscatter diffraction techniques. Transmission electron microscopy was also utilized to reveal typical precipitates in the un-pilgered specimen (S0). Results indicate that at low/medium strains, there exist non-deformation grains with hard orientations in the pilgered tube specimens, leading to heterogeneous microstructures. With increasing strains, the tube specimens show continuously reduced grain sizes and increased kernel average misorientations along with higher fractions of low angle boundaries, resulting in enhanced microstructural homogeneity. During the pilgering, the texture of Zr-1.0Sn-1.0Nb-0.3Fe alloy tube gradually transforms from initial c//TD to c//RD, which changes back to the c//TD at high strains (&gt;∼ 60%). In the meantime, the &lt; 10–10&gt;//AD component is initially weakened slightly but then significantly enhanced, while there is an opposite trend for that of the &lt; 11–20&gt;//AD component. According to the analysis of in-grain misorientation axes, the textural evolution during the pilgering results from the coordination of multiple slip systems and the pyramidal slip can be substantially activated at a high strain.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"185 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Annealing Treatment on the Heterogeneous Microstructure and Properties of Cold-Rolled FeCoCrNiMn High-Entropy Alloy 退火处理对冷轧铁钴铬镍锰高熵合金异质显微组织和性能的影响
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12540-024-01795-6
Yong Hu, Tao Yang, Chunwang Pan, Lincheng Liu, Haitao Jiao

The cold rolling and annealing treatment were applied to the face-centered cubic FeCoCrNiMn high-entropy alloy (HEA). The study investigated the heterogeneous microstructure and mechanical properties of FeCoCrNiMn HEA under different annealing temperatures and rolling reduction amounts. The results show that, when annealed at 600 ℃ − 700 ℃, it is beneficial for obtaining a heterogeneous microstructure composed of fine grains, deformed grains and precipitated phases. Due to the multiple strengthening mechanisms caused by the heterogeneous microstructure, the FeCoCrNiMn HEA exhibits excellent tensile properties, achieving a better balance of strength and plasticity. With a primary rolling and annealing treatment at 650 ℃ for 1 h, the recrystallization volume fraction is 50%, and the yield strength, ultimate tensile strength and elongation are 730.66 MPa, 909.67 MPa and 23.60% respectively, indicating high strength and ductility. With the increase of the annealing temperature, the precipitation of Cr-rich σ phase becomes more evident, the maximum volume fraction of σ phase is 1.96%, and the yield strength is increase by 41.65 MPa due to precipitation strengthening. With the increase of the degree of recrystallization, a phenomenon of texture component weakening and texture randomization occurs, but the main rolling textures, such as P-type and B-type textures, are still retained.

Graphical Abstract

对面心立方铁钴铬镍锰高熵合金(HEA)进行了冷轧和退火处理。研究考察了不同退火温度和轧制减量下铁钴铬镍锰高熵合金的异质显微组织和力学性能。结果表明,在 600 ℃ - 700 ℃ 退火时,有利于获得由细小晶粒、变形晶粒和析出相组成的异质微观结构。由于异质微观结构带来的多重强化机制,铁铬镍锰 HEA 表现出优异的拉伸性能,在强度和塑性之间实现了更好的平衡。在 650 ℃ 下进行 1 小时的初轧和退火处理,再结晶体积分数为 50%,屈服强度、极限抗拉强度和伸长率分别为 730.66 MPa、909.67 MPa 和 23.60%,显示出较高的强度和延展性。随着退火温度的升高,富含铬的σ相析出更加明显,σ相的最大体积分数为 1.96%,由于析出强化,屈服强度提高了 41.65 MPa。随着再结晶程度的增加,出现了纹理成分弱化和纹理随机化的现象,但仍保留了主要的轧制纹理,如 P 型和 B 型纹理。
{"title":"Effect of Annealing Treatment on the Heterogeneous Microstructure and Properties of Cold-Rolled FeCoCrNiMn High-Entropy Alloy","authors":"Yong Hu, Tao Yang, Chunwang Pan, Lincheng Liu, Haitao Jiao","doi":"10.1007/s12540-024-01795-6","DOIUrl":"https://doi.org/10.1007/s12540-024-01795-6","url":null,"abstract":"<p>The cold rolling and annealing treatment were applied to the face-centered cubic FeCoCrNiMn high-entropy alloy (HEA). The study investigated the heterogeneous microstructure and mechanical properties of FeCoCrNiMn HEA under different annealing temperatures and rolling reduction amounts. The results show that, when annealed at 600 ℃ − 700 ℃, it is beneficial for obtaining a heterogeneous microstructure composed of fine grains, deformed grains and precipitated phases. Due to the multiple strengthening mechanisms caused by the heterogeneous microstructure, the FeCoCrNiMn HEA exhibits excellent tensile properties, achieving a better balance of strength and plasticity. With a primary rolling and annealing treatment at 650 ℃ for 1 h, the recrystallization volume fraction is 50%, and the yield strength, ultimate tensile strength and elongation are 730.66 MPa, 909.67 MPa and 23.60% respectively, indicating high strength and ductility. With the increase of the annealing temperature, the precipitation of Cr-rich σ phase becomes more evident, the maximum volume fraction of σ phase is 1.96%, and the yield strength is increase by 41.65 MPa due to precipitation strengthening. With the increase of the degree of recrystallization, a phenomenon of texture component weakening and texture randomization occurs, but the main rolling textures, such as P-type and B-type textures, are still retained.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"95 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them 利用物理原位形成铜纳米颗粒的方法制造多孔表面铜颗粒并增强铜涂层之间的烧结结合力
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12540-024-01790-x
Byeong Jo Han, Jong-Hyun Lee

Cu particles with porous surface are fabricated and used as the paste fillers for rapid sintering. The particles are manufactured by the formation of Cu5Zn8 on the surface of the Cu particles, followed by dezincification. The porous structure formed on the surface of the Cu particles collapses owing to external compression during sinter bonding and the in situ formation of Cu nanodebris, thereby enhancing the sinter-bondability. The sinter bonding was performed under 10 MPa at 300 °C in air. Higher shear strength was measured for the paste containing Cu particles with a porous surface compared to the identical sized spherical Cu particles at all bonding times. In particular, a near-full-density bondline was formed after bonding for 3 min and the shear strength increased to 15.85 MPa. When bonding was maintained for 10 min, an excellent shear strength of 20.17 MPa was obtained.

Graphical Abstract

制造出表面多孔的铜颗粒,并将其用作快速烧结的浆状填料。这种颗粒是通过在铜颗粒表面形成 Cu5Zn8,然后进行脱锌处理而制成的。在烧结结合过程中,铜颗粒表面形成的多孔结构会因外部挤压而塌陷,并在原位形成铜纳米碎屑,从而提高了烧结结合能力。烧结结合是在 300 °C 的空气中,在 10 兆帕的压力下进行的。与相同大小的球形铜颗粒相比,含有多孔表面铜颗粒的浆料在所有粘结时间内都能测得更高的剪切强度。尤其是在粘结 3 分钟后,形成了接近全密度的粘结线,剪切强度增加到 15.85 兆帕。当粘合时间保持 10 分钟时,获得了 20.17 兆帕的出色剪切强度。
{"title":"Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them","authors":"Byeong Jo Han, Jong-Hyun Lee","doi":"10.1007/s12540-024-01790-x","DOIUrl":"https://doi.org/10.1007/s12540-024-01790-x","url":null,"abstract":"<p>Cu particles with porous surface are fabricated and used as the paste fillers for rapid sintering. The particles are manufactured by the formation of Cu<sub>5</sub>Zn<sub>8</sub> on the surface of the Cu particles, followed by dezincification. The porous structure formed on the surface of the Cu particles collapses owing to external compression during sinter bonding and the in situ formation of Cu nanodebris, thereby enhancing the sinter-bondability. The sinter bonding was performed under 10 MPa at 300 °C in air. Higher shear strength was measured for the paste containing Cu particles with a porous surface compared to the identical sized spherical Cu particles at all bonding times. In particular, a near-full-density bondline was formed after bonding for 3 min and the shear strength increased to 15.85 MPa. When bonding was maintained for 10 min, an excellent shear strength of 20.17 MPa was obtained.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"279 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys 更正:难焊高强度合金超声波振动辅助连接技术的研究现状与前景
IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12540-024-01802-w
Yue Zhang, JianBiao Peng, Ruitao Peng, JiaChuan Jiang, Bei Lei, ChangHui Liao, ChangYou Xu
{"title":"Correction: Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys","authors":"Yue Zhang,&nbsp;JianBiao Peng,&nbsp;Ruitao Peng,&nbsp;JiaChuan Jiang,&nbsp;Bei Lei,&nbsp;ChangHui Liao,&nbsp;ChangYou Xu","doi":"10.1007/s12540-024-01802-w","DOIUrl":"10.1007/s12540-024-01802-w","url":null,"abstract":"","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"2971 - 2971"},"PeriodicalIF":3.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and Mechanical Properties of Al-Cu-Mn Alloy Mechanically Alloyed with 5 wt% Zr After Multi-Directional Forging 多向锻造后机械合金化了 5 wt% Zr 的 Al-Cu-Mn 合金的显微组织和力学性能
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12540-024-01800-y
A. S. Prosviryakov, A. I. Bazlov, M. S. Kishchik, A. V. Mikhaylovskaya

Zr-containing aluminum-based alloys and especially Al-Zr composites have high thermal resistance due to the formation of Al3Zr dispersoids from supersaturated aluminum solid solution. The use of mechanical alloying can significantly increase the solubility of zirconium and improve the strength properties at elevated temperatures. The aim of the present work is to investigate the effect of multi-directional forging (MDF) on the microstructure and properties of Al-Cu-Mn alloy mechanically alloyed with 5 wt%Zr. Mechanical alloying was carried out by ball milling for 20 h at 300 rpm. The temperature of hot pressing and subsequent MDF operation was 400 °C. SEM, XRD and TEM were used to study the microstructure. In this work, it was shown that MDF leads to the formation of a poreless structure compared to hot pressing due to strain accumulation during hot deformation, as well as grain growth and microhardness reduction. At the same time, the highest compressive yield strength at 350 °C of 132 MPa was achieved after forging. The obtained material consisted of nanocrystalline aluminum matrix and secondary precipitates of Al3Zr with cubic (L12) and tetragonal (D023) lattices as well as Al20Cu2Mn3 phase.

Graphical Abstract

含锆铝基合金,尤其是铝锆复合材料具有很高的耐热性,这是因为过饱和铝固溶体形成了 Al3Zr 分散体。使用机械合金可以显著提高锆的溶解度,改善高温下的强度性能。本研究旨在探讨多向锻造(MDF)对含 5 wt%Zr 的铝铜锰合金微观结构和性能的影响。机械合金化是通过球磨进行的,球磨时间为 20 小时,转速为 300 转/分。热压和随后的中密度纤维板操作温度为 400 ℃。使用 SEM、XRD 和 TEM 研究了微观结构。研究结果表明,与热压相比,中密度纤维板在热变形过程中由于应变积累以及晶粒长大和显微硬度降低而导致无孔结构的形成。同时,锻造后在 350 °C 时达到了 132 兆帕的最高压缩屈服强度。所获得的材料由纳米晶铝基体、具有立方(L12)和四方(D023)晶格的 Al3Zr 二次析出物以及 Al20Cu2Mn3 相组成。
{"title":"Microstructure and Mechanical Properties of Al-Cu-Mn Alloy Mechanically Alloyed with 5 wt% Zr After Multi-Directional Forging","authors":"A. S. Prosviryakov, A. I. Bazlov, M. S. Kishchik, A. V. Mikhaylovskaya","doi":"10.1007/s12540-024-01800-y","DOIUrl":"https://doi.org/10.1007/s12540-024-01800-y","url":null,"abstract":"<p>Zr-containing aluminum-based alloys and especially Al-Zr composites have high thermal resistance due to the formation of Al<sub>3</sub>Zr dispersoids from supersaturated aluminum solid solution. The use of mechanical alloying can significantly increase the solubility of zirconium and improve the strength properties at elevated temperatures. The aim of the present work is to investigate the effect of multi-directional forging (MDF) on the microstructure and properties of Al-Cu-Mn alloy mechanically alloyed with 5 wt%Zr. Mechanical alloying was carried out by ball milling for 20 h at 300 rpm. The temperature of hot pressing and subsequent MDF operation was 400 °C. SEM, XRD and TEM were used to study the microstructure. In this work, it was shown that MDF leads to the formation of a poreless structure compared to hot pressing due to strain accumulation during hot deformation, as well as grain growth and microhardness reduction. At the same time, the highest compressive yield strength at 350 °C of 132 MPa was achieved after forging. The obtained material consisted of nanocrystalline aluminum matrix and secondary precipitates of Al<sub>3</sub>Zr with cubic (L1<sub>2</sub>) and tetragonal (D0<sub>23</sub>) lattices as well as Al<sub>20</sub>Cu<sub>2</sub>Mn<sub>3</sub> phase.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"117 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Strategy for Simultaneous Increasement in the Strength-Ductility Balance of Directly-Quenched Ultra-High Strength Low Alloy Steel 同时提高直接淬火超高强度低合金钢强度-延展性平衡的策略
IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1007/s12540-024-01794-7
Jung-Hyun Park, Min-Seok Baek, Young-Kyun Kim, Jin-Hee Ham, Kee-Ahn Lee

This study investigated a strategy for simultaneous improving in the strength and ductility of the directly quenched ultra-high strength low alloy steel via low-temperature tempering. To stabilize the microstructure, sub-zero treatment was also employed at -73 °C for 30 min, and then tempering was performed for two types of temperature at 200 °C and 630 °C for 30 min. The microstructure of as-quenched steel consists of lath martensite and meta-stable retained austenite. After low temperature tempering (200 °C), some stable reverted austenite was formed at the austenite/martensite interface. When tempering was performed at high temperature (630 °C), the entire austenite remained as reverted austenite. In addition, Ti-rich carbides were observed at the martensite lath boundaries during tempering treatment. Tensile strength increased up to ∼ 1.8 GPa after low-temperature tempering, and ductility was also higher than that of as-quenched steel. In contrast, the steel which was tempered at 630 °C shows low mechanical properties compared to the as-quenched steel. Correlations between microstructure evolution (meta-stable to stable austenite transformation), mechanical properties and deformation behavior were also discussed and identified.

Graphical Abstract

本研究探讨了通过低温回火同时提高直接淬火超高强度低合金钢强度和延展性的策略。为了稳定显微组织,还采用了-73 ℃深冷处理 30 分钟,然后在 200 ℃和 630 ℃两种温度下回火 30 分钟。淬火钢的微观结构由板条马氏体和元稳定残余奥氏体组成。低温回火(200 °C)后,奥氏体/马氏体界面上形成了一些稳定的回复奥氏体。在高温(630 °C)回火时,整个奥氏体仍为还原奥氏体。此外,在回火处理过程中,在马氏体板条边界还观察到了富钛碳化物。低温回火后,抗拉强度提高至 1.8 GPa,延展性也高于淬火钢。相反,与淬火钢相比,630 ℃回火钢的机械性能较低。此外,还讨论并确定了显微组织演变(元稳定奥氏体向稳定奥氏体转变)、机械性能和变形行为之间的相关性。
{"title":"A Strategy for Simultaneous Increasement in the Strength-Ductility Balance of Directly-Quenched Ultra-High Strength Low Alloy Steel","authors":"Jung-Hyun Park, Min-Seok Baek, Young-Kyun Kim, Jin-Hee Ham, Kee-Ahn Lee","doi":"10.1007/s12540-024-01794-7","DOIUrl":"https://doi.org/10.1007/s12540-024-01794-7","url":null,"abstract":"<p>This study investigated a strategy for simultaneous improving in the strength and ductility of the directly quenched ultra-high strength low alloy steel via low-temperature tempering. To stabilize the microstructure, sub-zero treatment was also employed at -73 °C for 30 min, and then tempering was performed for two types of temperature at 200 °C and 630 °C for 30 min. The microstructure of as-quenched steel consists of lath martensite and meta-stable retained austenite. After low temperature tempering (200 °C), some stable reverted austenite was formed at the austenite/martensite interface. When tempering was performed at high temperature (630 °C), the entire austenite remained as reverted austenite. In addition, Ti-rich carbides were observed at the martensite lath boundaries during tempering treatment. Tensile strength increased up to ∼ 1.8 GPa after low-temperature tempering, and ductility was also higher than that of as-quenched steel. In contrast, the steel which was tempered at 630 °C shows low mechanical properties compared to the as-quenched steel. Correlations between microstructure evolution (meta-stable to stable austenite transformation), mechanical properties and deformation behavior were also discussed and identified.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"64 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metals and Materials International
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1