Brain tumor MRI identification and classification using DWT, PCA and kernel support vector machine

Omar Faruq, Md. Jahidul Islam, Md. Sakib Ahmed, Md. Sajib Hossain, Narayan Chandra Nath
{"title":"Brain tumor MRI identification and classification using DWT, PCA and kernel support vector machine","authors":"Omar Faruq, Md. Jahidul Islam, Md. Sakib Ahmed, Md. Sajib Hossain, Narayan Chandra Nath","doi":"10.47813/2782-2818-2024-4-1-0133-0152","DOIUrl":null,"url":null,"abstract":"Classification, segmentation, and the identification of the infection region in MRI images of brain tumors are labor-intensive and iterative processes. Numerous anatomical structures of the human body may be envisioned using an image processing theory. With basic imaging methods, it is challenging to see the aberrant human brain's structure. The neurological structure of the human brain may be distinguished and made clearer using the magnetic resonance imaging technique. The MRI approach uses a number of imaging techniques to evaluate and record the human brain’s interior features. In this study, we focused on strategies for noise removal, gray-level co-occurrence matrix (GLCM) extraction of features, and segmentation of brain tumor regions based on Discrete Wavelet Transform (DWT) to minimize complexity and enhance performance. In turn, this reduces any noise that could have been left over after segmentation due to morphological filtering. Brain MRI scans were utilized to test the accuracy of the classification and the location of the tumor using probabilistic neural network classifiers. The classifier's accuracy and position detection were tested using MRI brain imaging. The efficiency of the suggested approach is demonstrated by experimental findings, which showed that normal and diseased tissues could be distinguished from one another from brain MRI scans with about 100% accuracy.","PeriodicalId":508991,"journal":{"name":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","volume":"122 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47813/2782-2818-2024-4-1-0133-0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification, segmentation, and the identification of the infection region in MRI images of brain tumors are labor-intensive and iterative processes. Numerous anatomical structures of the human body may be envisioned using an image processing theory. With basic imaging methods, it is challenging to see the aberrant human brain's structure. The neurological structure of the human brain may be distinguished and made clearer using the magnetic resonance imaging technique. The MRI approach uses a number of imaging techniques to evaluate and record the human brain’s interior features. In this study, we focused on strategies for noise removal, gray-level co-occurrence matrix (GLCM) extraction of features, and segmentation of brain tumor regions based on Discrete Wavelet Transform (DWT) to minimize complexity and enhance performance. In turn, this reduces any noise that could have been left over after segmentation due to morphological filtering. Brain MRI scans were utilized to test the accuracy of the classification and the location of the tumor using probabilistic neural network classifiers. The classifier's accuracy and position detection were tested using MRI brain imaging. The efficiency of the suggested approach is demonstrated by experimental findings, which showed that normal and diseased tissues could be distinguished from one another from brain MRI scans with about 100% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DWT、PCA 和核支持向量机进行脑肿瘤 MRI 识别和分类
脑肿瘤核磁共振图像的分类、分割和感染区域的识别是一个耗费大量人力的反复过程。人体的许多解剖结构都可以用图像处理理论来设想。利用基本的成像方法来观察异常的人脑结构具有挑战性。通过磁共振成像技术,人脑的神经结构可以被分辨出来并变得更加清晰。磁共振成像方法使用多种成像技术来评估和记录人脑的内部特征。在这项研究中,我们重点研究了基于离散小波变换(DWT)的噪声去除、灰度共现矩阵(GLCM)特征提取和脑肿瘤区域分割策略,以最大限度地降低复杂性并提高性能。反过来,这也减少了分割后因形态学过滤而可能遗留的噪音。利用脑部核磁共振成像扫描,使用概率神经网络分类器测试分类的准确性和肿瘤的位置。分类器的准确性和位置检测通过核磁共振脑成像进行了测试。实验结果表明,从脑核磁共振扫描图像中区分正常组织和病变组织的准确率约为 100%,证明了所建议方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model for assessing the investment attractiveness of regions Exploring collaborative filtering through K-Nearest Neighbors and Non-Negative Matrix Factorization Оптимизация пробоподготовки при определении жирнокислотного состава ультрапастеризованного молока Мобильное приложение для мониторинга и контроля климата в серверном помещении Перспективы развития электронных платёжных систем
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1