{"title":"Porous titanium alloys for medical application: Progress in preparation process and surface modification research","authors":"Binghao Wang, Miao Luo, Zheng Shi, Yuwei Cui, Yuting Lv, Chengliang Yang, Liqiang Wang","doi":"10.36922/msam.2753","DOIUrl":null,"url":null,"abstract":"Excellent mechanical properties and biocompatibility are the most sought-after attributes in biomedical materials for the regeneration of damaged tissues. However, conventional dense titanium alloys possess a modulus significantly higher than that of human tissues, leading to potential stress-shielding effects. Medical porous titanium alloys can reduce the elastic modulus of the material, promote tissue fixation and vascular regeneration, and improve the suitability for human tissue properties. With the continuous development of technology, the preparation process of porous titanium alloys has undergone a series of multifaceted transformations and improvements in the aspects of powder sintering, fiber preparation, and additive manufacturing processes, and its structural characteristics and mechanical properties are constantly evolving in a controllable direction. Alongside the enhancement of the material’s mechanical properties through porous design, optimization of the properties at the implant-tissue interface also leads to improved antimicrobial and osteogenic properties of porous titanium. Due to the complex internal structure of porous titanium alloys, surface modification is mainly carried out in fluid media, which is realized by morphological modification and the introduction of functional substances. Over time, the surface modification of porous titanium alloys for medical applications has progressed from morphological modification and introduction of chemical composition to the loading of bioactive substances. This evolution aims to enhance safety and efficiency in the use of these materials. This paper reviews the preparation and surface modification processes of porous titanium alloys for medical use and summarizes the advantages, disadvantages, and influencing factors among different processes, with a view to providing new ideas for the development of porous implants for medical use.","PeriodicalId":503695,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"113 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/msam.2753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Excellent mechanical properties and biocompatibility are the most sought-after attributes in biomedical materials for the regeneration of damaged tissues. However, conventional dense titanium alloys possess a modulus significantly higher than that of human tissues, leading to potential stress-shielding effects. Medical porous titanium alloys can reduce the elastic modulus of the material, promote tissue fixation and vascular regeneration, and improve the suitability for human tissue properties. With the continuous development of technology, the preparation process of porous titanium alloys has undergone a series of multifaceted transformations and improvements in the aspects of powder sintering, fiber preparation, and additive manufacturing processes, and its structural characteristics and mechanical properties are constantly evolving in a controllable direction. Alongside the enhancement of the material’s mechanical properties through porous design, optimization of the properties at the implant-tissue interface also leads to improved antimicrobial and osteogenic properties of porous titanium. Due to the complex internal structure of porous titanium alloys, surface modification is mainly carried out in fluid media, which is realized by morphological modification and the introduction of functional substances. Over time, the surface modification of porous titanium alloys for medical applications has progressed from morphological modification and introduction of chemical composition to the loading of bioactive substances. This evolution aims to enhance safety and efficiency in the use of these materials. This paper reviews the preparation and surface modification processes of porous titanium alloys for medical use and summarizes the advantages, disadvantages, and influencing factors among different processes, with a view to providing new ideas for the development of porous implants for medical use.