An alternative method for assessing the agreement between test results

IF 0.1 Q4 INSTRUMENTS & INSTRUMENTATION Ukrainian Metrological Journal Pub Date : 2024-03-28 DOI:10.24027/2306-7039.1.2024.300868
Andrii Korobko, Julia Kotova
{"title":"An alternative method for assessing the agreement between test results","authors":"Andrii Korobko, Julia Kotova","doi":"10.24027/2306-7039.1.2024.300868","DOIUrl":null,"url":null,"abstract":"The paper proposes a new way of assessing the agreement between measurement results during test quality assurance procedures in the laboratory. The decision-making rule is based on the measurement uncertainty. The probability, with which mathematical expectations of the measured data lie within the uncertainty of the indicator measurements, is proposed as a quantitative indicator. Such a quantitative indicator of the impact of methodological errors is proposed as the ratio of the difference between mathematical expectations of the measurement results obtained in different series of measurements to the average uncertainty of their determination, taking into account the applied decision-making rule. This indicator is based on the assumption that the measurement results are normally distributed. To simplify the process of calculating quality assurance indicators and reduce the risk of making mistakes in calculations, the “Agreement” module was created on the basis of a virtual test laboratory. The input data for the calculation of the agreement in the module are: measuring equipment, measurement results themselves (at least three for each tester), the coverage coefficient, full names of the people performing the measurements, and the coefficient of the decision-making rule.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.1.2024.300868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a new way of assessing the agreement between measurement results during test quality assurance procedures in the laboratory. The decision-making rule is based on the measurement uncertainty. The probability, with which mathematical expectations of the measured data lie within the uncertainty of the indicator measurements, is proposed as a quantitative indicator. Such a quantitative indicator of the impact of methodological errors is proposed as the ratio of the difference between mathematical expectations of the measurement results obtained in different series of measurements to the average uncertainty of their determination, taking into account the applied decision-making rule. This indicator is based on the assumption that the measurement results are normally distributed. To simplify the process of calculating quality assurance indicators and reduce the risk of making mistakes in calculations, the “Agreement” module was created on the basis of a virtual test laboratory. The input data for the calculation of the agreement in the module are: measuring equipment, measurement results themselves (at least three for each tester), the coverage coefficient, full names of the people performing the measurements, and the coefficient of the decision-making rule.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估测试结果一致性的另一种方法
本文提出了一种在实验室测试质量保证程序中评估测量结果一致性的新方法。决策规则基于测量的不确定性。测量数据的数学期望值在指标测量不确定度范围内的概率被作为量化指标提出。考虑到所应用的决策规则,这种方法误差影响的定量指标被建议为不同系列测量中获得的测量结果的数学期望值与确定这些结果的平均不确定性之间的差值之比。该指标基于测量结果呈正态分布的假设。为了简化质量保证指标的计算过程,降低计算错误的风险,在虚拟测试实验室的基础上创建了 "协议 "模块。在该模块中计算协议的输入数据包括:测量设备、测量结果本身(每个测试人员至少三个)、覆盖系数、执行测量人员的全名以及决策规则系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ukrainian Metrological Journal
Ukrainian Metrological Journal INSTRUMENTS & INSTRUMENTATION-
自引率
0.00%
发文量
21
期刊最新文献
A statistical method for the assessment of metrological characteristics of reference materials Study of metrological characteristics of the state primary measurement standard of volume flow and mass consumption of liquid in preparation for participation in international comparisons The estimation of the long-term drift of the inductance measurement standards Study of reading errors when calibrating analog ohmmeters Modern approaches to studying the accuracy of determination of deformation values in geodesic monitoring of crane equipment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1