{"title":"A nonlinear stress-strain relationship for soil and rock","authors":"Gary Norris, Horng-Jyh Yang","doi":"10.1680/jgeen.22.00108","DOIUrl":null,"url":null,"abstract":"While many employ a hyperbolic stress-strain relationship for soils, it is known that such a relationship is accurate over either the small strain range as encountered in earthquake and soil dynamics problems or a relationship with different input parameters that are needed over large strains as is required for finite element analyses of large deformation behavior. The two characterizations do not become one. A proposed power relationship is presented that was developed to characterize the triaxial test stress-strain behavior of cohesionless material from lubricated or “frictionless” cap and base tests (some 144 tests) covering a range in the natural variation in particle size, particle shape and surface roughness, over low to high confining pressure. This relationship covers the range in strain from 10−6 to soil failure. It has been used successfully to date in laterally loaded pile response characterization (the Strain Wedge Model) and shallow foundation load-settlement-bearing capacity response. Most recently, it has been extended to assess the behavior of rock-like material (caliche). The relationship and its comparison with the hyperbolic relationship for large strain and the shear modulus reduction curve for seismic behavior are presented here.","PeriodicalId":509438,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","volume":"47 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgeen.22.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While many employ a hyperbolic stress-strain relationship for soils, it is known that such a relationship is accurate over either the small strain range as encountered in earthquake and soil dynamics problems or a relationship with different input parameters that are needed over large strains as is required for finite element analyses of large deformation behavior. The two characterizations do not become one. A proposed power relationship is presented that was developed to characterize the triaxial test stress-strain behavior of cohesionless material from lubricated or “frictionless” cap and base tests (some 144 tests) covering a range in the natural variation in particle size, particle shape and surface roughness, over low to high confining pressure. This relationship covers the range in strain from 10−6 to soil failure. It has been used successfully to date in laterally loaded pile response characterization (the Strain Wedge Model) and shallow foundation load-settlement-bearing capacity response. Most recently, it has been extended to assess the behavior of rock-like material (caliche). The relationship and its comparison with the hyperbolic relationship for large strain and the shear modulus reduction curve for seismic behavior are presented here.