HUMAN DETECTION IN SEARCH AND RESCUE OPERATIONS USING EMBEDDED ARTIFICIAL INTELLIGENCE

Mohd. Ridzuan Ahmad, Ahmed Abdullah Hussein Al-azzani
{"title":"HUMAN DETECTION IN SEARCH AND RESCUE OPERATIONS USING EMBEDDED ARTIFICIAL INTELLIGENCE","authors":"Mohd. Ridzuan Ahmad, Ahmed Abdullah Hussein Al-azzani","doi":"10.11113/jurnalteknologi.v86.19497","DOIUrl":null,"url":null,"abstract":"The paper discusses the use of unmanned aerial vehicles (drones) in search and rescue operations to detect humans in disaster areas where rescue teams cannot reach. The paper highlights the limitations of current methods, including high computational power, high cost, and dependence on internet connectivity. The paper proposes using transfer learning to develop a human detection model with a mean average precision (mAP@0.5) above 90% and compares two deep learning models, MobileNet v2 and EfficientDet. The study uses multi-datasets of aerial images of humans, namely SeaDronesee and SARD, and the TensorFlow version 2.8 framework. MobileNet v2 required less GPU usage for training and yielded a relatively high accuracy of 95.5%, while EfficientDet achieved higher accuracy (97.3%). The trained MobileNet v2 model size is compressed using quantization from 25.5 MB to 4.15 MB, making it suitable for deployment on an edge device for on-chip inference. The paper concludes that the proposed method can improve the efficiency and effectiveness of search and rescue operations.","PeriodicalId":55763,"journal":{"name":"Jurnal Teknologi","volume":"71 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v86.19497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper discusses the use of unmanned aerial vehicles (drones) in search and rescue operations to detect humans in disaster areas where rescue teams cannot reach. The paper highlights the limitations of current methods, including high computational power, high cost, and dependence on internet connectivity. The paper proposes using transfer learning to develop a human detection model with a mean average precision (mAP@0.5) above 90% and compares two deep learning models, MobileNet v2 and EfficientDet. The study uses multi-datasets of aerial images of humans, namely SeaDronesee and SARD, and the TensorFlow version 2.8 framework. MobileNet v2 required less GPU usage for training and yielded a relatively high accuracy of 95.5%, while EfficientDet achieved higher accuracy (97.3%). The trained MobileNet v2 model size is compressed using quantization from 25.5 MB to 4.15 MB, making it suitable for deployment on an edge device for on-chip inference. The paper concludes that the proposed method can improve the efficiency and effectiveness of search and rescue operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用嵌入式人工智能进行搜救行动中的人员探测
本文讨论了在搜救行动中使用无人驾驶飞行器(无人机)在救援队无法到达的灾区探测人类的问题。论文强调了当前方法的局限性,包括高计算能力、高成本和对互联网连接的依赖。论文提出使用迁移学习来开发平均精度(mAP@0.5)超过 90% 的人类检测模型,并比较了 MobileNet v2 和 EfficientDet 这两种深度学习模型。研究使用了多个人类航空图像数据集,即 SeaDronesee 和 SARD,以及 TensorFlow 2.8 版框架。MobileNet v2 在训练时需要使用的 GPU 较少,准确率相对较高,为 95.5%,而 EfficientDet 的准确率更高(97.3%)。通过量化,训练后的 MobileNet v2 模型大小从 25.5 MB 压缩至 4.15 MB,因此适合部署在边缘设备上进行片上推理。本文的结论是,所提出的方法可以提高搜救行动的效率和效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Pemodelan Identifikasi Objek Kendaraan Bermotor Menggunakan Faster Region based Convolutional Neural Network (R-CNN) Berbasis Python Pemanfaatan Mikrotik RB942-2ND Menggunakan Metode Firewall Filtering Untuk Keamanan Jaringan Dengan Model Forensikk Battle Royale Console Game Performance Analysis (Case Study: East Jakarta, Indonesia) Pengaruh Suhu Evaporasi-Kristalisasi dan Persentase Gula Batu terhadap Warna Produk Serbuk Jahe Merah (Zingiber officinale) Penyisihan Kandungan Perak dalam Limbah Cair Pencucian Film Melalui Proses Biofiltrasi dengan Tanaman Eceng Gondok
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1